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ABSTRACT
A developmental model of an artificial neuron is presented. In this
model, a pair of neural developmental programs develop an entire
artificial neural network of arbitrary size. The pair of neural chro-
mosomes are evolved using Cartesian Genetic Programming. Dur-
ing development, neurons and their connections canmove, change,
die or be created. We show that this two-chromosome genotype
can be evolved to develop into a single neural network fromwhich
multiple conventional artificial neural networks can be extracted.
The extracted conventional ANNs share some neurons across tasks.
We have evaluated the performance of this method on three stan-
dard classification problems. The evolved pair of neuron programs
can generate artificial neural networks that perform reasonably
well on all three benchmark problems simultaneously. It appears
to be the first attempt to solvemultiple standard classification prob-
lems using a developmental approach.
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1 INTRODUCTION
Despite artificial neural networks (ANNs) being first proposed over
sixty years ago, there remains a large gap in the cognitive ability
between ANNs and their biologic counterpart. We suggest that
one weakness of many ANNs models is that they encode learned
knowledge solely in the form of connection strengths (i.e. weights)
[4] This leads to “catastrophic forgetting” (CF) in which ANNs
trained to perform well on one problem, forget how to solve the
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original problem when they are re-trained on a new problem [2].
In principle, developmental neural approaches could alleviate CF
by growing numerous connections between pairs of neurons. While
ANNs that develop based on an evolved rule set have been ex-
plored, there remains a need for a greater effort to explore devel-
opmental neural networks which modify their topology online, as
seen in biologic neural growth. We propose a new conceptually
simple neural model and suggest that at least two neural programs
are required to construct neural networks: one to represent the
neuron soma and the other the dendrite. The role of these pro-
grams is to allow neurons to move, change, die or replicate. For
the dendrite, the program needs to be able to grow and change
dendrites, cause them to die and also to replicate. Since develop-
mental programs build networks that change over time it is nec-
essary to define new problem classes that are suitable to evaluate
such approaches. We argue that trying to solve multiple computa-
tional problems (potentially even of different types) is an appropri-
ate type of problem. We show that the pair of evolved programs
can build a network from which multiple conventional ANNs can
be extracted, each of which can solve a different classification prob-
lem.

2 THE NEURON MODEL
Our aim is to construct a minimal developmental model. Minimal
means that if we take a snapshot of the neural network at a partic-
ular time we would see a conventional graph of neurons, weighted
connections and sigmoidal activation functions. However, tomake
a developmental neural network we require a mechanism whereby
the ANN can change over time, even during training. In addi-
tion, we take a cellular view of development, in which an entire
network is developed from a few cells. The network itself grows
from the interaction of neurons acting in parallel (but sequentially
simulated). In the model, all the neuron and dendrite parameters
(weights, health and position) are defined by numbers in the range
[−1,−1]. The places where external inputs are provided is predeter-
mined uniformly within the region between -1 and Iu . The param-
eter Iu defines the upper bound of their position. Similarly, output
neurons are initially uniformly distributed between the parameter
Ol and 1. However, output neurons, as with other neurons, can
move according to the neuron program. All neurons are marked
as to whether they provide an external output or not. In the ini-
tial network there are Ninit non-output neurons and No output
neurons, where No denotes the number of outputs required by the
computational problem being solved.

To construct such a developmental model of an artificial neural
network we need neural programs that not only apply a weighted
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sum of inputs to an activation function to determine the output
from the neuron, but a program that can adjust weights, create or
delete connections, and create or delete neurons. Following [1]
we have used the concept of health to make this possible. Neuron
and connection healths are real numbers between [−1, 1]. How-
ever, if the health of a neuron falls below (exceeds) a user-defined
threshold,HNl (HNu ) the neuronwill be deleted (replicated). Like-
wise, dendrites are subject to user defined health thresholds, HDl
(HDu ) which determine whether the dendrite will be deleted or
a new one will be created. The number of dendrites each neu-
ron can have is bounded by user-defined lower (upper) bounds de-
noted by NDl (NDu ). Also the total number of neurons allowed in
the network is also bounded between a user-defined lower (upper)
bound Nl (Nu ). These parameters ensure that the number of neu-
rons and connections per neuron remain in well-defined bounds,
so that a network can not eliminate itself or grow too large. The
model is illustrated in in Fig. 1. All weights are assumed to lie
in the range [−1, 1] and a sigmoid transfer function is used. The
two neural programs are represented and evolved using a form
of Genetic Programming (GP) known as Cartesian Genetic Pro-
gramming (CGP). CGP [3, 5] is a form of GP in which computa-
tional structures are represented as directed, often acyclic graphs
indexed by their Cartesian coordinates. The programs are actu-
ally sets of mathematical equations that read variables associated
with neurons and dendrites to output updates of those variables.
This approach was inspired by some aspects of a developmental
method for evolving graphs and circuits proposed by Miller and
Thomson [6] and was influenced by some of the ideas described
in [1]. In the proposed model, weights are determined from a pro-
gram that is a function of neuron position, togetherwith the health,
weight and length of dendrites.

The inputs to the soma program are as follows: the health and
position of the neuron and the average health, length and weight
of all dendrites connected to the neuron. The soma program up-
dates its own health and position based on these inputs. These
are indicated by primed symbols in Fig. 1. Every dendrite belong-
ing to each neuron is controlled by an evolved dendrite program.
The inputs to this program are the health, weight and length of
the dendrite and also the health and position of the parent neuron.
The evolved dendrite program decides how the health, weight and
length of the dendrite are to be updated.

3 EXPERIMENTS AND CONCLUSIONS
We have evolved neural programs that build ANNs for solving
three standard classification problems (cancer, diabetes and glass).
The definitions of these problems are available in the UCI reposi-
tory of machine learning problems1. The main research questions
for this experimental investigation are: Aremultiple learning epochs
more effective than a single epoch? Are shared inputs to the ANN
more effective than non-shared? Should output neurons be allowed
to move? Should evolved program outputs update neural variables
directly or should they determine user-defined increments in those
variables (linear or non-linear)? Experimental tests showed that the
best performance occurs when problem inputs are shared, output

1https://archive.ics.uci.edu/ml/datasets.html

Figure 1: The model of a developmental neuron
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neuron can move and adjustment of neuron variables is incremen-
tal. Comparison of results against other published developmental
approaches is intended for future work, as there is little precedent
for using developmental ANNs to simultaneously solve multiple
classification problems.
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