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Abstract. We argue that there is an upper limit on the complexity of software that
can be constructed using current methods. Furthermore, this limit is orders of mag-
nitude smaller than the complexity of living systems. We argue that many of the ad-
vantages of autonomic computing will not be possible unless fundamental aspects of
living systems are incorporated into a new paradigm of software construction. Truly
self-healing and maintaining software will require methods of construction that
mimic the biological development of multi-cellular organisms. We demonstrate a
prototype system which is capable of autonomous repair and regeneration without
using engineered methods. A method for evolving programs that construct multi-
cellular structures (organisms) is described.

1 Introduction

In 2001, IBM launched their so-called Autonomic Computing Initiative' because of the
growing problems associated with the complexity of modern software. They recognized
the enormous costs associated with software maintenance, and correctly indicated that
unless fundamental steps were taken to deal with this we would find that we would no
longer be able to increase the complexity of software and have it remain reliable. To
quote: "Consider this: at current rates of expansion there will not be enough skilled I/T
people to keep the world's computer systems running...Some estimates for the number of
I/T workers required globally...put it at 200 million, or close to the entire population of
the United States. Even if we could somehow come up with enough skilled people, the
complexity is growing beyond human ability to manage it...Without new approaches,
things will only get worse...". The systems IBM are considering already utilize all the
received wisdom about the process of efficient software construction (i.e. OO, reuse,

! http://www-306.ibm.com/autonomic/index.shtml



design patterns). Their proposed solution to this problem was to build a software con-
struction architecture in which self-monitoring and self-healing was an integral part. The
idea was to fight complexity with complexity (FCWC). There are some fundamental
problems with this approach. Foremost among these, is that we believe the complexity
crisis is caused by the top-down methodology of software construction. At present all the
capability of software and hardware is engineered into the system at the design stage. This
means that one has to understand and control all the interactions between the components.
This rapidly causes a combinatorial crisis leading to enormous verification problems.
Secondly, and more fundamentally the manpower required to construct ever more com-
plex software grows with this engineered complexity. These problems will not be solved
by using a cleverer engineering approach. The third problem is related to the concept of
FCWC. It is difficult to see how engineering more complex software or hardware can
possibly help reduce the growing problem of software construction and maintenance since
by assumption the proposed system is even more complex. Finally it will prove to be very
difficult to extract human knowledge of software and system maintenance to build a suffi-
ciently sophisticated expert system.

In this paper we are looking beyond the immediate technological horizon towards the
time when we will require software with much greater complexity than we have at pres-
ent. This drive for increased complexity of software will come from the desire for it to be
ever more intelligent and autonomously adaptive. Although we believe the motivation of
the Autonomic Computing movement is well founded, it will ultimately fail unless at-
tempts are made to develop a new way of constructing and refining software. This new
paradigm will not only abandon the formal verification of software systems but also even
have to abandon Boolean logic and other formal programming constructs at the level of
the software programmer. Such software will be created in a manner more akin, for ex-
ample, to the way a horticulturist might create a new type of rose. They do not need to
understand the enormous complexity of a living plant but just need to know how to cross-
fertilize, graft and nurture and selectively breed roses with the characteristics they require.
When they prune the plant, the plant responds autonomously: seals up the cut site and
starts growing again. We believe that software in the future will have to have characteris-
tics like this. Thus, to begin the process of creating this new paradigm of software con-
struction we have turned to nature and looked at the mechanisms of biological develop-
ment.

Living systems, such as plants, do not simply exist in a constant stable and static state,
but continually develop through cell replication and death. Animals, on the other hand,
reach maturity - at which point growth ceases - but continue to develop through chemical
and cell renewal, for example almost all proteins in the body are destroyed in hours while
most cells die and are replaced (e.g. red blood cells (erythocytes) have a half life of 120



days)?. This impressive level of self-organisation is what the software systems of the fu-
ture will have to be capable of in order to enable them to autonomously adapt to cope with
either damage or a shifting problem definition. This may be thought of as analogous to a
plant surviving and thriving within a changing environment. This paper outlines an ap-
proach for the development of a simple system that embodies these ideas of self-
organisation and emergence.

2 Development, Cellular Automata and Evolutionary Algorithms

Biological development is the process that leads from a fertilized cell to an entire organ-
ism. It is the most sophisticated software and hardware construction process on the planet.
The human genome contains about 3x10° nucleotides each containing 2 bits of informa-
tion. Yet the human body is made of roughly 5 x 10" cells. Even if we use a conservative
estimate of a cells information content, say 1 Mbit we find that the information content of
the human body is roughly 10° times the content of the genome! There is obviously
something very clever about the construction process that in our view has to be used for
us to build complex software systems of the future [3]. How does nature achieve this feat
of engineering? Frank M. Harold explains [17]: “Genes specify the cell’s building blocks;
they supply raw materials, help regulate their availability and grant the cell independence
of its environment. But the higher levels of order, form and function are not spelled out in
the genome. They arise by the collective self-organization of genetically determined ele-
ments, affected by cellular mechanisms that remain poorly understood.”

The work we describe in this paper is attempting to follow nature’s example and use
emergence and self-organization to construct structures that have more information con-
tent than the genetic information needed to specify the software cells. It is therefore natu-
ral to turn to nature once again to find some algorithmic paradigm that is responsible for
creating such exquisite systems. The Cellular automaton [36][41][42] is a computational
paradigm in which a grid of identical computational units (cells) are in communication
with their local neighbours. In two dimensions there are two commonly defined neigh-
bourhoods: von Neumann and Moore. In the former case each cell communicates with
four other cells: north, east, south and west, in the latter cells communicate also with
north-east, south-east, south-west and north-west.

Evolutionary Algorithms have been developed from idealizations of Darwinian evolu-
tion [11][14][20][35][37]. In this paper we have applied an evolutionary algorithm to the
production of computer programs. Such approaches are generally called Genetic Pro-
gramming [2][25][26][27].

2 Alberts et al. Molecular Biology of the Cell, 4th edition, 2002, page 1292. Proteins are synthe-
sized in 20s to several minutes, pages 349-350. The authors were unable to obtain a source on
typical lifetimes of protein molecules.



3 Related work

Fleischer and Barr created a sophisticated multicellular developmental test bed and in-
cluded realistic models of chemical diffusion, cell collision, adhesion and recognition
[10]. Their purpose was to investigate cell pattern generation and found that size regula-
tion is critical and non-trivial. Eggenberger suggests that the complex genotype-
phenotype mappings typically employed in developmental models allow the reduction of
genetic information without losing the complex behaviour and will scale better on com-
plex problems [9]. Bongard and Pfeifer have evolved genotypes that encode a gene ex-
pression method to develop the morphology and neural control of multi-articulated simu-
lated agents [6]. Bentley and Kumar examined a number of genotype-phenotype map-
pings on a problem of creating a tessellating tile pattern [4]. They found that the indirect
developmental mapping (that they refer to as an implicit embryogeny) could evolve the
tiling patterns much quicker, and further, that they could be subsequently grown to (iter-
ated) much larger sized patterns. Other researchers are more motivated by fundamental
biological aspects of cell behaviour. Furusawa and Kaneko modeled cell internal dynam-
ics and its relationship to the emergence of cell multicellularity [12]. Hogeweg has carried
out impressive work in computer models of development and constructed a sophisticated
model of cells (biotic) by modeling the internal dynamics by groups of cells in a cellular
automaton that are subject to energy minimization [18][19]. The energy minimization
automatically leads to cell movement and sorting by differential cell adhesion. The cell
genome was modeled as 24 node Boolean network that defined cell signaling and adhe-
sion. She evolved organisms that exhibited many behaviours that are observed in living
systems: cell migration and engulfing, budding and elongation, and cell death and re-
differentiation. Kumar has recently presented an impressive, biologically well-motivated
computational development system involving a genetic regulatory network and cell re-
ceptor-mediated signal transduction [29]. Recently, many of the research contributions in
computational development have been presented in a single volume [28].

A number of researchers have studied the potential of Lindenmeyer systems [30] for
developing artificial neural networks (ANNs) and generative design. Boers and Kuiper
have adapted L-systems to develop the architecture of artificial neural networks (ANNs)
[5]. They used an evolutionary algorithm to evolve the rules of a L-system that generated
feed-forward neural networks. Kitano developed another method for evolving the archi-
tecture of an artificial neural network [23] using a matrix re-writing system that manipu-
lated adjacency matrices. Although Kitano claimed that his method produced superior
results to direct methods (i.e. a fixed architecture, directly encoded and evolved), it was
later shown in a more careful study that the two approaches were of equal quality [38].
Gruau devised an elegant graph re-writing method called cellular encoding [15][16].
Cellular encoding is a language for local graph transformations that controls the division
of cells that grow into artificial neural networks. Others have successfully employed this
approach in the evolution of recurrent neural networks that control the behaviour of



simulated insects [24]. L-systems have also been used to define three dimensional objects
[21]. Jacobi created an impressive artificial genomic regulatory network, where genes
code for proteins and proteins activate (or suppress) genes [22]. He used the proteins to
define neurons with excitatory or inhibitory dendrites. Others evolved encoded neuron
position and branching properties of axonal trees that would spread out from the neurons
and connect to other neurons [7][34]. Astor and Adami have created a developmental
model of the evolution of an ANN that utilizes an artificial chemistry [1].

4 The Cellular Map

In our work the software (phenotype) is represented as a set of cells arranged in a non-
toroidal two-dimensional cellular automaton [32]. However there are several grids one for
the software cells, the others for chemicals. The function of each cell is governed by its
genotype which is a representation of a feed-forward Boolean circuit. This maps the cell’s
input conditions to output behaviour. Cells can be dead or alive. Each live cell sees its
own state and the states of its eight immediate neighbours. It also sees the amount of
chemical in the Moore neighbourhood. Using this information, the cell’s program decides
on the amount of chemical that it will produce, whether it will live, die, or change to a
different cell type at the next time step, whether and how it will grow.

Unlike real biology, when a cell replicates itself, it is allowed to grow in any or all of
the eight neighbouring cells simultaneously (this is done to speed up growth, mainly for
reasons of efficiency). In all the experiments reported in this paper there are three cell
types (represented by colours) and the amount of chemical is represented by an eight-bit
binary number. The cell types are represented by two-bit binary codes, with 00 reserved
for the absence of a cell (or a dead cell).

Only live cells have their programs

Chemical o R .. . .
bits { \ } Chemical executed. Initially a single cell is placed
- el :‘} New el 5p¢ bits in thg grid (the zygote) aI.ld. one or more
Cell - 1ype { — chemicals are set to an initial value at
o \ } Growth bits this location. If two or more cells decide
T Grow/No Grow bit to grow into the same location at the

next time step, the last such cell in the
scan path overwrites all previous
growths. This was chosen as it greatly
simplified the process of constructing the newly grown organism. The two dimensional
grid is scanned from the top-left corner to the bottom right. The process of constructing
the new organism at time t+1 from the organism at time t is the following: Every live cell
from the top-left to the bottom-right has its program run (all cells run the same program).
A new map (initially empty) is created and filled with cells that have either grown, or not

Fig. 1. The cell program’s binary inputs and
outputs



died, in the map at time t. After all the programs inside the living cells have been run, the
map at time t+1 replaces the map at time t. The chemical map is updated in a similar
manner. A depiction of the cell’s inputs and outputs is shown in Fig. 1. The chemicals
obey the diffusion rule (1), where ¢ represents the amount of chemical and N the set of
Moore neighbours.
1
(i) new =112(¢ii ) o1a +— (cir)
ij ) new ijJold 16]{’%]\[ kl)old (1)
This simple diffusion rule was chosen to mimic chemical conservation; however the role
of diffusion and its formulation remains for later investigation.
In our initial work the function of the cellular map has been chosen to be purely topologi-
cal and we have evolved the program inside the cell to grow and become particular pat-
terns such as national flags, regular spots. However in more recent work we have chosen
various points on the grid to measure the chemical and use that to define the control sig-
nals for a pen. The object being to grow programs that can make the pen draw particular
line figures and to recover the desired behaviour autonomously when the cellular program
is subjected to severe damage.

4 Training the software: Cartesian Genetic Programming

To train the genotypes to obtain the desired phenotype we use a form of Genetic Pro-
gramming (GP) called Cartesian Genetic Programming (CGP) that was developed from
methods developed for the automatic evolution of digital circuits [33]. CGP represents a
program or circuit as a list of integers that encode the connections and functions. The
representation is readily understood from a small example. Consider the one bit binary
adder circuit (Fig. 2). This has

019010 02316 32210 three inputs that represent the

two bits to be summed and the
carry-in bit. It has two outputs:
sum and carry-out. CGP
employs an indexed list of
functions that represent in this
example, various two input
logic gates and three input
multiplexers. Suppose that in a
function lookup table AND is function 6, XOR is function 10 and MUX is function 16.
The three inputs A, B, Cin are labeled 0, 1, 2. The output of the left (right) XOR gate is
labeled 3 (6). The output of the MUX gate is labeled 5. The AND output is labeled 4. In
Fig. 2 a genotype is shown and how it is decoded to a phenotype (the one-bit binary ad-
der). The integers in italics represent the functions, and the others represent the connec-

Fig. 2. Genotype and corresponding phenotype
(one-bit binary adder)



tions between gates, however, if it happens to be a two input gate then the third input is
ignored. It is assumed that the circuit outputs are taken from the last two nodes. The sec-
ond group of four integers (shown in grey) represent an AND gate that is not part of the
circuit phenotype. Since only feed-forward circuits are being considered, it is important to
note that the connections to any gate can only refer to gates that appear on its left.

Typically CGP uses point mutation (that is constrained to respect the feed-forward na-
ture of the circuit). Suppose that the first input of the MUX gate (0) was changed to 4.
This would connect the AND gate into the circuit (defined by the four grey genes). Simi-
larly, a point mutation might disconnect gates. Thus, CGP uses a many to one genotype-
phenotype mapping, as redundant nodes may be changed in any way and the genotypes
would still be decoded to the same phenotype. The (1+4)-ES evolutionary algorithm (be-
low) uses characteristics of this genotype-phenotype mapping to great advantage (i.e.
genetic drift). Step 3 is a crucial step in this algorithm: if more than one chromosome is
equally good then the algorithm always chooses the chromosome that is not the cur-
rent_best (i.e. equally fit but genetically different). This step allows a genetic drift process
that turns out be very beneficial [40][44].

1. Generate 5 chromosomes randomly to form the population
Evaluate the fitness of all the chromosomes in the population
Determine the best chromosome (called current_best)
Generate 4 more chromosomes (offspring) by mutating the current_best
The current_best and the four offspring become the new population
6. Unless stopping criterion reached return to 2

A

The mutation rate is defined to be the percentage of each chromosome that is mutated in
step 4. In all the experiments described in this paper only four kinds of MUX logic gates
were employed defined by the expression f(A,B,C)=AND(A, NOT(C)) OR AND(B, C).
The four types correspond to cases where inputs A and B are either inverted or not. The
program outputs are taken from the rightmost set of consecutive nodes.

5 Demonstration tasks

In the biological development of organisms cells have to behave differently according to
their position within the organism. Lewis Wolpert [43] proposed that this positional in-
formation might be laid down in the formation of chemical gradients relative to organism
boundaries. Cells might respond differently according to threshold concentrations. He
likened the problem to one of growing a French Flag; the developmental method of con-
struction would be able to produce a recognizable flag of arbitrary size. This illustrates an
important property of developmental systems in that they are scale free (i.e. there is no
relationship between the genotype size and the size of the phenotype). Wolpert’s model
was one of the inspirations for the task the maps of cells were to achieve. We defined two



tasks. The first was to produce a growing and always recognizable German flag. The
second was to produce a growing then maturing French Flag. In the first experiment tar-
get maps representing German and French flags were defined. These were used to com-
pare the evolved cellular map at particular times in the development to the target map.
The evolved organism and target organism were compared cell by cell and a cumulative
score of correctness was calculated. This was the fitness of the cell genotype used in the
evolutionary algorithm. In the German flag experiment the cell Cartesian program was
allowed 200 nodes, 20 evolutionary runs with 30,000 generations were carried out. The
target maps were a small German flag at iteration 4 and a slightly larger flag at iteration 6.
There was a single chemical initialized at the maximum value (255) at the location of the
seed cell. The third fittest solution (gGf11) found is shown in Fig. 3. This always looks
like a growing German flag. The two fitter solutions looked better at iterations 3 and 5 but
rapidly lost their German flag like appearance. The temporal behaviour of the second
fittest solution (gGf0) is shown in Fig. 4. In section 7 we will examine the behaviour of a
graft of both these maps.

Figure 3. Growth of "third best" multlcellular program (ngl 1) from a red seed cell (O)
to a growing German flag.

2 31 4 | S 8

Flgure 4. Growth of "second best" multicellular program (ngO) from ared seed cell.

In experiment 2, the target maps were a fixed size French flag and fitness was calculated
at iterations 7, 8, 9, 10. The cell’s Cartesian program was allowed 300 nodes and once
again 20 runs of 30,000 generations was carried out. The best solution is shown in Fig. 5.
The cellular map stops changing at iteration 8. We examine its behaviour under damage in
a sister paper [31] where we will see that it has remarkable powers of autonomous regen-
eration reminiscent of the pond organism hydra which can reform itself when its cells are

dissociated and then re—aggregated ina centrifuge [13].
7 F1gure5 Growth of multicellular program from a whlte seed cel (0) to a mature
French flag at iteration 8.




6 Results: Emergent regeneration

We will examine the behaviour of the growing German flag (gGfl1) described in the
previous section. Fig. 6 shows what happens when a large hole is cut out of the growing
German flag (upper) and when it is subjected to substantial random damage (lower). We
see that the cellular program gradually fills in the hole and recovers though it retains
"scarring".

m - = P '“:;::::::.
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Figure 6. Autonomous recovery of multicellular program for growing German flag
from badly damaged initial conditions.

In many other cases we found that the growing German flag can cope with a great variety
of damage almost always recovering and rebuilding the German flag. The regenerative
powers of the French flag are also impressive and examined in the sister paper [31]

7 Grafting software

Motivated by the rose-breeding metaphor we have investigated the behaviour of cellular
maps that have been joined together involving distinct and independently evolved geno-
types (i.e. grafting). When a particular cell program decides to grow it replicates its own
genotype. The German flag cellular map at iteration 8, gGfl1 was bisected. The cells on
the right half had their genotypes replaced with those of gGfO (the cell states were left
untouched). The cellular chemical map was left untouched corresponding to gGf11.
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Figure 7. Two different genotypes gGf11 and gGf0 are grafted together at iteration 11,
The upper shows the location of each genotype over time and lower shows the phenotype.



Fig. 7 shows what happens to the genotypes and phenotype over time. The black region in
indicates the gGfl1 genotypes and the red region the gGf0 genotypes. The graft of the
two cellular maps behaves in a stable way, with each genotype dominating on each side of
the map and mixing taking place in the region around the graft site. Other experiments
have been conducted where cells of gGf0 are randomly placed into the German flag of
gGfl11, early indications show that gGf11 tends to dominate and smother the foreign cells.
This might have implications for future work on software immunity in developmental
systems.

8 Conclusions and further work

It is easy to argue that the results presented in this paper do not address practical problems
however, the research is at an early stage and need not immediately be tested on industrial
problems just yet. However, the next phase of the work is to apply these emergent devel-
opmental systems to a more practical problem. Work has already begun on the use of such
systems to control a robot. The idea being to map inputs (from sensors) and outputs (to
effectors) to simulated chemical sources. The developmental genotypes will be evolved to
control the robot. Once the control program is sufficiently good, it will be damaged. In-
vestigations will be carried out to see if the developmental control program can autono-
mously recover the desired robot behaviour. Work is also continuing in looking at the
application of these ideas to communication network control and balancing. We have
discussed the idea that conventionally constructed software will reach a complexity ceil-
ing in the near future and that bottom-up, bio-inspired ideas for new software paradigms
will become increasingly important if we are to construct ever more complex, intelligent
and autonomous systems. We have shown how it is possible to create emergent systems
inspired by developmental biology that can be trained to achieve a higher level goal. It
turns out that systems produced in this way are highly robust to damage and are able to
regenerate themselves. We feel that software systems that are capable of self-repair will
have to consider such approaches. The construction of useful developmental systems is
really in its infancy, but we hope to have demonstrated their potential in the task of creat-
ing self-maintaining, self-repairing software that may be able to utilize complexity in
ways that conventional software designers are unable to.
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