A comparison between developmental and direct
encodings

An update of the GECCO 2006 Paper “The Dead State”

Simon Harding
Department of Computer Science
Memorial University
Newfoundland, Canada

simonh@cs.mun.ca

ABSTRACT

In this paper we compare the evolutionary and run time
behaviours of two forms of indirect encoding and a direct
encoding. The indirect encodings are comparable to ap-
proaches used in the emerging field of developmental sys-
tems. We evolve a developmental encoding based on a cel-
lular automaton to grow bit patterns of predefined complex-
ities (in the Kolmogorov sense), and compare its behaviour
to the evolution of a direct encoding on the same task. We
find that the developmental encodings perform worse at high
complexities than the direct encodings, and suggest that
this is an artefact from using cell overwriting. Our findings
suggest that developmental approaches may scale better for
tasks that have complexities below a certain threshold. In
this updated version of the paper, we also compare the dif-
ference in behaviour of the two approaches for short and
long bit strings, and observe that again cell overwriting is
detrimental to performance.

Keywords

Developmental Systems, Genetic Algorithms, Cellular Au-
tomata

1. INTRODUCTION

It has been suggested that a form of indirect genotype to
phenotype mapping, called a developmental mapping, may
have advantages over direct encodings of the phenotype. De-
velopmental approaches are a bio-inspired technique that
uses a concept of growth to map a genotype (an individual’s
DNA) to a phenotype (a mature individual). Typically such
systems are modelled at a cellular level, where at the be-
ginning of the developmental process there is a single cell.
A set of rules, typically an evolved program, then defines
the behaviour of the cell. One of the most important be-
haviours is that of growth. The program can instruct the

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listgunes prior specific
permission and/or a fee.

GECCO2006 SEATTLE, WA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Julian F. Miller
Department of Electronics
University of York
York, UK

jfm@ohm.york.ac.uk

cell to replicate in some fashion, producing another cell in
the environment. The cells in a developmental environment
are allowed to interact with each other, which in turn, pro-
duces a complex set of interactions between the cells in the
environment.

It has been thought that developmental systems may allow
us to evolve more complicated, robust and scalable solutions
to many tasks, such as neural networks, electronic circuits or
computer programs. Direct encodings, it has been argued,
do not scale well - the size of the genotype increases as the
size of the phenotype, and that if the phenotype has interact-
ing components the system becomes un-evolvable. However,
only meagre evidence been produced for the unscalability of
direct mappings. Usually, researchers utilize rather nave di-
rect mappings, and also attempt to address relatively simple
problems. Comparing developmental systems to direct en-
codings is difficult. It is important to choose comparable
direct and indirect representations, and then use “optimal”
parameters to prevent differences in behaviour being caused
by poor configuration.

The motivation for this paper is to try to get at what
kind of problems are most suitable to be tackled using de-
velopmental mappings. Our way of approaching this is to
look at problems which have predefined complexities (in the
Kolmogorov sense). High complexity patterns are random
in nature and almost incompressible. While low complex-
ity patterns are nearly completely ordered and highly com-
pressible. 'We do not expect developmental mappings to
be useful for either of these problems. Instead, we expect
developmental mappings to be useful for patterns that are
of intermediate complexity, perhaps being characterized by
having randomness on a small scale and order on a larger
scale. It is not clear that Kolmogorov complexity is the most
suitable meeasure with which to classify various patterns of
this type. However, we are unaware of another more suitable
measure. Notwithstanding these negative remarks about our
approach reported in this paper, we feel it is attractive to
try to classify in a continuous manner (via complexity) a
range of target patterns (bit patterns) and to examine the
relative differences between evolving direct mappings and
developmental ones. Accordingly, we present, in this paper,
initial results for an approach that aims to minimise the dif-
ferences between the direct and indirect mappings, in order
to see the difference in behaviour of the two systems.

1.1 Redated Work

A number of researchers have considered developmental
mappings and compared them to direct mappings.

Kitano developed a method for evolving the architecture
of an artificial neural network using a matrix re-writing sys-
tem that manipulated adjacency matrices[8]. Although Ki-
tano claimed that his method produced superior results to
direct methods (i.e. a fixed architecture, directly encoded
and evolved), it was later shown in a more careful study that
the two approaches were of equal quality [13].

Gruau devised a graph re-writing method called cellular
encoding [4]. Cellular encoding is a language for local graph
transformations that controls the division of cells which grow
into artificial neural networks. The cells (which we can
identify as nodes in the ANN) store connection strengths
(weights) and a threshold value. The cells also store a gram-
mar tree that defines the graph re-writing rules and a reg-
ister that defines the start position in the grammar tree.
When cells divide the daughter cells are identical to their
parent. The grammar tree was evolved using an evolution-
ary algorithm. This method was shown to be effective at
optimising both the architecture and weights at the same
time, and scaled better than a direct encoding (where all
the weights had to be independently evolved) [5].

Bentley and Kumar examined a number of genotype —
phenotype mappings on a problem of creating a tessellating
tile pattern[3]. They found that the indirect developmental
mapping (that they referred to as an implicit embryogeny)
could evolve tiling patterns much quicker than a variety of
other representations (including direct) and further, that
they could be subsequently grown to (iterated) much larger
sized patterns. One drawback that they reported was that
the implicit embryogeny tended to produce the same types
of patterns (i.e. of relatively low complexity). As we will
see later our results support this finding.

Hornby and Pollack evolved context free L-systems to de-
fine three dimensional objects (table designs)[6]. They found
that their generative system could produce designs with
higher fitness and faster than direct methods. They point
out that generative or developmental systems will scale bet-
ter than direct methods when there is modularity present.
For instance, in the case of furniture design if there is a
module that is responsible for producing a table leg, evolu-
tion only needs to alter and perfect one module rather than
having to independently adjust an arbitrary number of in-
dependent table leg producing coding regions. This kind of
developmental modularity is evident in nature in the form of
Hox genes [14]. It provides a powerful and evolvable mech-
anism whereby evolution can alter the number of sub-parts
in an animal body plan.

Eggenberger investigated the relative merits of a direct,
and developmental genetic representation for the difficult
problem of optical lens design[7]. He found that the direct
method (where the location of optical elements was evolved)
scaled very badly when compared with the developmental
approach.

Roggen and Federici compared evolving direct and devel-
opmental mappings for the task of producing specific two
dimensional patterns of various sizes (the Norwegian Flag
and a pattern produced by Wolfram 1D CA rule 90)[10].
They showed in both cases that as the pixel dimensions
of the patterns increased the developmental methods out-
performed the direct. It is noteworthy, that performance
disparity was much more marked for the relatively regular

Norwegian flag pattern.

2. OUR APPROACH

In our approach we developed a simple, deterministic de-
velopmental system based on 1D cellular automata. We
compare the behaviour and evolvability of two variants of a
phenotype-genotype mapping with a direct encoding of the
phenotype. The direct encoding method uses a binary rep-
resentation, where the fitness of the individual is measured
directly from the genotype. The two systems with an indi-
rect mapping use a cellular automaton to construct a simple
developmental system. For one of the cellular automata ap-
proaches, we implement a form of cell growth and cell death
to mimic a more biological developmental process.

Other developmental systems have used 2D cellular au-
tomata (e.g. [9, 10]), however we chose 1D to simplify the
problem further, and to make exhaustive experiments com-
putationally tractable.

The developmental system consists of a toroidal, 1D bi-
nary cellular automata, with a neighbourhood diameter of 3
(i.e. the cells can only observe their immediate neighbours).
The genotype-phenotype mapping is performed by iterating
the cellular automaton from an initial starting configuration.
The transition between the states in the cellular automata
comes from a rule set, which we evolve. In this instance, the
rules take 3 binary inputs and output a single binary state,
thus there are a total of 256 possible rules. The inputs are
the states of the current cell, and its neighbouring cells. The
output of the rule determines the next state of that cell, and
if we are using growth and death, may control the state of
its neighbours (see section 2.2).

In these experiments, the cellular automata rules and the
initial state are determined by evolution. The task is to find
an initial state for the CA and the rules, that produce a
specified pattern when the CA is iterated.

2.1 Genotype

The direct encoding and developmental approaches use
different genetic representations. However, both of the rep-
resentations can be considered as binary strings.

For the direct encoding, the genotype is a binary string of
the same length as the target pattern, i.e. 50 bits. We use
two point crossover and a uniform mutation (see table 2.1
for parameters). The target size of 50 bits was an arbitrary
decision. However, it was based on computational practi-
cality. To make statistically meaningful analysis we needed
to assess the relative merits of the two types of genotype-
phenotype mapping on a large range of target patterns of
different complexities.

For the developmental systems, the genotype contains two
sections: the initial states and the CA rules. The initial
states are represented as a binary string, the states of which
are copied into the first row of the cellular automata before
evaluation. There are 2% possible rules for a 3 input binary
system. We encode these rules as an eight bit binary string,
with each bit specifying the output state for a particular
input pattern. For both sections of the genotype two point
crossover and a uniform mutation were used. However, the
rules and initial states have different mutation rates (see
table 2.1). For the majority of the experiments the length
initial state is the same as the length of the target pattern.
However, for some experiments the length of the initial state
is restricted (so that we could examine the effect of growth

i’IF

AN

RO
t R “ : "'hﬂ"w b Iﬂl*“[ﬁ" .éﬁﬂr I St s

0.0 0.1 02 0.3 04

05 086 0.7 08 09 1.C

Figure 1: The target patterns. Horizontal axis shows pattern complexity.

in the system).

It should be noted that the length of the genotype for
the developmental encoding can be longer than that for the
direct encoding. For direct encoding the genotype length is
50 bits. Where the initial state in the CA is the same length
as the target pattern, the total genotype length is 58 bits.
Where we grow from a smaller initial state, the initial state
is of length 6, hence the total length of the chromosome is 14
bits. The length of the smaller initial state was arbitrarily
chosen as 6, and in future we wish to investigate how the
length of this affects the behaviour of the system.

We used a basic genetic algorithm with a single popula-
tion, elitism and tournament selection. To allow for com-
parison between different techniques, we determined all the
parameters for the algorithm using the parameter optimisa-
tion technique described in section 2.5.

Throughout this paper, the following abbreviations will
be used to distinguish between the different encoding types:
DIR = Direct Encoding, CA = Cellular Automata, DEV =
CA With cell death/growth.

DIR CA DEV

Parameter
Population 10 36 81
Elitism 2 8 1
Tournament 2 3 7

Mutation rates
Phenotype 0.035 | N/A N/A

Initial State N/A | 0.0891 | 0.188
Rules N/A | 0.0115 | 0.0816
Table 1: “Optimal” parameter values for differ-

ent experiment types. DIR = Direct Encoding,
CA = Cellular Automata, DEV = CA With cell
death/growth

2.2 Growth and Death

The ability to grow into neighbouring cells, and for cells to
die, is a distinction between the developmental model and
a normal cellular automata. In the developmental system
where dead states are allowed, a cellular automata update
rule is only run for cells that are alive (denoted by state
1). Cells that are type 0 are considered as dead. If a rule
produces a live output state and there are dead cells within
its neighbourhood in the next iteration, the cell grows into
these dead cells. A rule that produces a 0 output can be
viewed as killing that cell.

For example, if the current state of the cells is 00100, and
the CA rule is such that an input pattern 010 outputs 1.
After one iteration the pattern would become 01110. No
update rule was executed for the cells in state 0, however
the middle cell was alive (state 1) and produced an alive
output. This alive state then “grew” into the neighbouring
dead cells. In this example, there are 5 cells, however as

4 were dead we consider that the rules were only executed
once. In the next stage, the update rule will be executed 3
times.

2.3 Initial States

We compare the behaviour of two types of initial state
configurations. In the first instance, the entire length of
the cellular automata is specified by the genotype. How-
ever, this does not have the sense of “growth” required for
a developmental system. Therefore, we also investigate the
behaviour of a system where only a section of the initial row
can be determined by evolution, with the remaining cells in
a dead state.

24 TheTask

The task is to produce a particular bit pattern. For the
developmental systems, the output pattern is the current
state of the cellular automaton. With direct encoding, the
output pattern is the binary string genotype. The fitness
is determined as the proportion of states that are not the
same in both the target and the current output of the indi-
vidual i.e. a hamming distance defined as the percentage of
incorrect bits.

For the developmental systems, we did not restrict when
the pattern had to occur, however we did record when the
nearest match to the target pattern was observed so we can
determine if evolution preferred direct encoding to an indi-
rect encoding. The fitness was measured at every iteration
of the CA, and the best (minimum) fitness used as the the
fitness score. Measuring the fitness at every iteration also
means that we do not have to decide when the solution is
“mature” (i.e. should be compared with the target).

We generated 1002 different target bit patterns, made up
of 11 different complexity classes. Figure 1 shows these tar-
gets, with the lower complexity patterns towards the left,
and random patterns (high complexities) at the right of the
image.

Target patterns were generated with complexities that
ranged from 0 (the two patterns which were all either 1 or
0) to 1 (a random and hence incompressible) pattern.

2.5 Parameter Choice

To make the experiments more comparable, for the in-
direct mappings we used a technique to find the optimal
parameters for the evolutionary algorithm. Parameters are
derived from a sequential parameter optimization (SPO) of
earlier experiments. SPO [1, 2] is a technique, that com-
bines classical and modern statistical approaches, aiming
at optimizing parameters of non-deterministic algorithms.
SPO has its seeds in the fields of design and analysis of (de-
terministic) computer experiments (DACE) [11] and global
optimization[12]. It extends theses approaches by classical
statistics to cope with non—deterministic algorithms.

3. RESULTS

3.1 Direct Encoding

As a baseline comparison, we also evolved the target pat-
tern directly. The performance of the direct encoding is not
dependent upon the target pattern (as the bits are indepen-
dent of each other). Using a population of size 10, with a
tournament size of 2, and 2 individuals transmitted to the
next population through elitism, we found that on average
direct encoding required 705 evaluations (standard deviation
205). At minimum direct encoding with these parameters
required 370 evaluations.

The success rate was consistently 100 percent.

3.2 Success Rates

Figures 2and 3 show how the success rate varies as the
complexity is increased. Where the initial state was smaller
than the target pattern there were few instances where the
fitness was 0 (i.e. a perfect solution), therefore, for this
experiment success is determined when the fitness is below
0.1. The minimum and average fitness for these results is
shown in figure 4.

It is clear that the success rate decreases as the complexity
increases, and that in instances where we allow the solution
to grow from a smaller initial state the problem difficulty is
increased.

Figure 2 shows that the success rate increases slightly
when the complexity is > 0.6, the reason for this is unclear
and requires further investigation.

It appears that when cell death/growth is allowed that the
problem becomes particularly difficult for higher complex-
ities. We suggest that this is because of cell over-writing,
which becomes destructive as when a cell grows it can alter
the states of three cells. This would seem to be an inherent
problem in systems that permit overwriting of cells states
(as there is loss of information), and do not grow in a more
biological manner by physically adding cells that displace
other cells.

From figure 5 we can see that as the complexity of the
target pattern increases, the time taken to evolve a set of
rules and the initial state increases. Consistently, the use of
cell growth/death makes the problem harder for evolution
to solve.

3.3 Useof time

We recorded the cellular automata iteration where the
highest fitness value was recorded. From this, we are able
to see if evolution “prefers” to use the temporal property of
developmental systems, or if the easiest action is to evolve
the initial state to be the target pattern and then evolve a
simple function, such as an identity function.

Figure 6 shows the percentage of solutions that exploited
time and that achieved a perfect fitness score. It is clear that
in the majority of cases evolution uses the iterative nature
of the cellular automata, and that as the pattern complex-
ity increases evolution begins to favour a direct encoding.
Where cell death/growth is used, once the complexity ex-
ceeds 0.6 there is a massive change, and direct encoding is
preferred.

3.4 Computational requirements

For direct encoding, we can consider that the mapping
from genotype to phenotype requires no effort, as there is
no translation. For the developmental encodings, each time
a rule is executed some computation must be performed. Al-

-4
v —— CA
SN oy
o N
So | \ o
[%)] © \ \
7
o] As 4 O
o< A0 N, _o—0
a o N \O /o/o
N T ANS A —o
o - A- A~ A p-A- A
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
complexity
Figure 2: Success rate for different complexity

classes, where the initial state is the same size as
the target pattern.

] —— CA
;\5‘8 — -& - DEV
2o |
c ©
2o |
o<
3 ¢
5o | A\

" N \
o
L e
0.0 0.2 0.4 0.6 0.8 1.0
complexity
Figure 3: Success rate for different complexity

classes, where the initial state is smaller than the
target pattern.

though the rules used in these experiments are simple, other
developmental systems use complicated evolved programs.
If these programs have to be run many times to generate
an output, then it would appear that development could
become computationally expensive. On a sequential com-
puter, the larger the number of rules executed, the longer in
time it will take for the output to be reached. By their na-
ture, cellular developmental systems operate in parallel. It
should be noted that in parallel the total effort is the same,
however the total time may be reduced - depending on the
implementation. If each cell is physically implemented as it’s
own processor, it would be expensive, and therefore, prac-
tically, we would expect that many cells will be run on a
sequential processor.

In these experiments the number of times a rule was exe-
cuted was counted. For the encoding without growth/death,
the number of times the rule is run remains consistent. How-
ever, where there are dead cells the rule is not run.

Figure 7 shows that for simpler patterns, the minimum
number of times the rule is executed increases with com-
plexity. Both figures 7 and 8 show the average number of
times the rules are executed. When starting with an initial
state the same size as the target pattern, on average, the
rate is the same. However, when growing from a smaller

initial state, the number of times increases as complexity
increases.

This shows a potential advantage for developmental sys-
tems that allow for growth. It appears that if the problem
is of the right complexity, then you may be able to find a so-
lution and run the genotype phenotype mapping efficiently.

In the context of compression, we certainly see an advan-
tage. For direct encoding the phenotype is 50 bits long,
but for the non-direct encoding the genotype is only 14 bits.
Unfortunately, for this problem, the target patterns are too
short to accurately compare with other forms of compres-
sion such as Zip. In principle, the patterns of complexity
1 are totally random, and hence incompressible. Starting
from the small initial condition, the best fitness obtained
using a normal CA was 0.18 (average fitness 0.3, standard
deviation 0.04) and where growth/death are used (DEV)
the minimum fitness is 0.24 (average fitness 0.35, standard
deviation 0.04). For some applications, such as images or
audio, this lossy compression may be acceptable.

4. INITIAL STRING LENGTH

When the initial string length was reduced to 6, and the
cellular automata allowed to run from this size, we found
that the success rate dropped considerably for all complex-
ities (figure ??. Figure 14 shows that despite the success
rate dropping, the overall behaviour is similar to where the
initial state is the same length as the target.

5. EVOLVABILITY FORLONGBIT STRINGS

Using the same approach, we investigated the behaviour
for strings of length 500. Again, we compared the perfor-
mance across a range of complexity target patterns. One of
the criticisms of the original version of this paper was that
we should expect development to work better only on larger
phenotypes. However, we did not have the time to run the
computationally expensive experiments to determine the be-
haviour in this regard.

We find that in this case both systems performed worse than
for the shorter target string.

The first observation is that neither the cellular automata
or developmental system managed to find the target pattern
for any complexity of target pattern. From the graphs in fig-
ures 9 and 10, we can again see that as complexity increases,
the quality of the results decreases. Comparing these with
the results for the string of length 50, we can see that it is
harder to evolve to longer strings, and evolution is unable
to reduce the error to the same limits.

In order to see the effect of running the evolution for longer,
we increased the number of evaluations per run from 2000
to 5000. The graphs is figures 11 and 12 show that this
helped improve the results slightly, but there were still no
successful runs nor was there a change in behaviour relating
to complexity.

6. CONCLUSIONS

This paper shows that for this model of developmental
systems, that direct encoding can sometimes perform worse
(in terms of evolvability) than the indirect encodings. How-
ever, it appears that this advantage is only true for the lower
complexity patterns. For problems of complexity 0 it should
be no surprise that there are a large number of rules that can
rapidly produce a string of all 1s or all 0s. In this updated

paper, we have also shown that this method does not scale
in terms of target pattern length, or target pattern com-
plexity and that performing evolution for a longer number
of evaluations has limited impact.

We suggest that the cell overwriting issue may be the
cause of the poorly performing indirect mappings. To test
this, a more sophisticated model will need to be developed,
which of course reduces our ability to accurately compare
between methods.

The direct encoding is a much more reliable process. In
the experiments presented here it always finds a solution.
The success rate of the indirect encodings, rapidly dimin-
ishes as the complexity is increased.

The ability to use developmental systems as a lossy com-
pression is something that requires further investigation.

It is hinted here that the developmental model here may
be useful for problems of low complexity. In these experi-
ments we were able to define complexity ourselves, however,
for real world applications, the complexity of the problem is
unlikely to be known. This will make choosing the appro-
priate technique less easy. If you want to guarantee finding
a solution, direct encoding seems appropriate. However, if
you want to minimise the time spent evolving or the perform
some form of compression, than it may be worth attempting
a developmental approach.

In nature development appears to produce a large number
of repeated units at various levels. At the lowest level there
is massive duplication of cells, then at higher levels, there is
duplication of body segments. One of the “tricks” used in
natural evolution is that cells differentiate from one another
largely because of environmental imbalances (e.g. distribu-
tion of proteins within cells). These imbalances provide a
symmetry breaking mechanism and are not encoded in the
genotype. Thus, it suggests that artificial developmental
mechanisms should try to make use of this to achieve com-
plexity. In our experiments reported here, all the complexity
is imposed at the outset, and there is no mechanism for it to
be generated during development. Using a complexity mea-
sure based on Kolmogorov may be inappropriate as clearly
natural organisms have a complexity that should be mea-
sured in some kind of hierarchical way. For example, milli-
pedes are simple when viewed from a high level in that they
have many repeating units with the same function. However
at a lower level there will be quite a bit of random variation.

7. ACKNOWLEDGEMENTS

The authors would like to acknowledge Christian Lasar-
czyk (Department of Computer Science,University of Dort-
mund) for his assistance with the parameter optimisation
and visualisation of the results.

8. REFERENCES

[1] T. Bartz-Beielstein. Ezperimental Research in
Evolutionary Computation — The New
Ezxperimentalism. Natural Computing Series. Springer,
Berlin, Berlin, 2006.

[2] T. Bartz-Beielstein, C. Lasarczyk, and M. Preu8.
Sequential parameter optimization. In B. McKay
et al., editors, Proc. 2005 Congress on Evolutionary
Computation (CEC’05), Edinburgh, Scotland,
volume 1, pages 773-780, Piscataway NJ, 2005. IEEE
Press.

8]

[4

[5

[6]

[7]

8]

[9]

(10]

(13]

(14]

P. Bentley and S. Kumar. Three ways to grow designs:

A comparison of embryogenies for an evolutionary
design problem. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, editors, Proceedings of the Genetic and
FEvolutionary Computation Conference, volume 1,
pages 3543, Orlando, Florida, USA, 13-17 1999.
Morgan Kaufmann.

F. Gruau. Neural Network Synthesis using Cellular
Encoding and the Genetic Algorithm. PhD thesis,
France, 1994.

F. Gruau, D. Whitley, and L. Pyeatt. A comparison
between cellular encoding and direct encoding for
genetic neural networks. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 81-89, Stanford University,
CA, USA, 28-31 1996. MIT Press.

G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001, pages 600607, COEX, World
Trade Center, 159 Samseong-dong, Gangnam-gu,
Seoul, Korea, 27-30 2001. IEEE Press.

P. E. Hotz. Comparing direct and developmental
encoding schemes in artificial evolution: A case study
in evolving lens shapes. In Congress on Evolutionary
Computation, CEC 2004, 2004.

H. Kitano. Designing neural networks using genetic
algorithms with graph generation system. Complex
Systems, 4(4):461-476, 1990.

J. F. Miller. Evolving a self-repairing, self-regulating,
french flag organism. In GECCO (1), pages 129-139,
2004.

D. Roggen and D. Federici. Multi-cellular
development: is there scalability and robustness to
gain? In X. Yao, E. Burke, J. Lozano, and al., editors,
proceedings of Parallel Problem Solving from Nature 8,
PPSN 2004, pages 391-400, 2004.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P.
Wynn. Design and analysis of computer experiments.
Statistical Science, 4(4):409-435, 1989.

M. Schonlau, W. Welch, and R. Jones. Global versus
local search in constrained optimization of computer
models. In N. Flournoy, W. Rosenberger, and

W. Wong, editors, New developments and applications
in experimental design, volume 34, pages 11-25.
Institute of Mathematical Statistics, Beachwood OH,
1998.

A. Siddiqi and S. Lucas. A comparison of matrix
rewriting versus direct encoding for evolving neural
networks, 1998.

L. Wolpert. The Principles of Development. Oxford,
UK: Oxford University Press, 1998.

_ &
S _|—& CA avg. A BT
o |-A- DEV, avg. A- D7 A—A—A
— e A—
o _ A/A/ o,.o
%C\l— /A - -,
© - OoO- 0—o0—o0
fel ot
u:o AN O,'S/O
— - / e
o A ‘0 .
/A // —6— CA, min.
/ / e - DEV, min
o o-_0 -G - , .
S 4{A—0—0=0"
o T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
complexity

Figure 4: The minimum and average fitnesses
achieved where the initial state is smaller than the
target pattern, and the target pattern is 50 bits long.
Lower is better, with 0 being a perfect score.

~

® 4 CcA NG

& |-& pev N

o Ao o—
2?2 _A- g/o—-é’o °© O-TO
8- AT O/ \
e | .
S ‘s
5 5
28— p

®© D

B /

O_A

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
complexity

Figure 5: Number of evaluations taken to evolve
perfect solutions where the intial state is the same
length as the target pattern.

o T A—48=—4A- A- - A_
&) é\O\A A
o - \
<9 o \
S® N
° o 0=%—o_0—pg
= A
o _| \ d
oY \ !
@ \ /
2o /
3(\1_—6— CA ‘\ ,
£ -& - DEV o
= O - A- A

I

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
complexity

Figure 6: The percentage of solutions that exploited
time and that achieved a perfect fitness score

=

S —4 0 o o o 2 o
"o ,

%LO_ ’

o< ’

£ _AL 7

= - =~

= a- -A

0 o p)

23 - ,

Em /

Lo] ’

2 - —— CA
o /

= -& - DEV
TR 1A

H# N I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5
complexity

Figure 7: How the number of times a rule is ex-
ecuted for different complexity classes, where the
initial state is the same size as the target pattern.

a

s 9 o) o a)
S .

EGE ’

(OIS ’

s AL ’

E A-T T YN

n o ,

23 ,

2™ /

o] /

2 1 —— CA
o /

29 |, -A& - DEV
R 14

S T T | | |

0.0 0.1 0.2 0.3 0.4 0.5
complexity

Figure 8: How the number of times a rule is ex-
ecuted for different complexity classes, where the
initial state is smaller than the target pattern. It
should be noted that as the success rate for these
results was low, the results here are for solutions
which achieved a fitness of less than 0.1.

APPENDI X
Results for target bit strings of length 500

N — 08—
oﬁg/$~' %" A _%._:/é
o | o R -Xex
8 o + A ‘X'
g N // ./
£ £-% —e— DEV.avg
- -4& - DEV,min
o] -+ CA,avg
o | - % - CAmin
e | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Complexity
Figure 9: The minimum and average fitnesses

achieved where the initial state is smaller than the
target pattern, and the target pattern is 500 bits
long. Lower is better, with 0 being a perfect score.
These results are from running 2000 evaluations.

S
o
. P 4
N g4 R % 4=it
= o 5 —o— DEV,avg
- -4A - DEV,min
o] -+ - CA,avg
o - - CA,min
o

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Complexity

Figure 10: The minimum and average fitnesses
achieved where the initial state is the same length as
the target pattern, and the target pattern is 500 bits
long. Lower is better, with 0 being a perfect score.
These results are from running 2000 evaluations.

< O
- Z - S2R—o0
o — — Q.. .o
o QTRTR K FTA

o ﬁ__iP Vvt X

3 ° QR

g o K

i o] X'/ —e— DEV,avg
- _ N -A - DEV,min
o -+ CA,avg
o - % - CAmin
=

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Complexity

Figure 11: The minimum and average fitnesses
achieved where the initial state is smaller than the
target pattern, and the target pattern is 500 bits
long. Lower is better, with 0 being a perfect score.
These results are from running 5000 evaluations.

<
S
@ _

pe e >$Z_‘ng‘*”§

2o p—g=RTE=RT

iL © yited ' —— DEV,avg
- -4A - DEV,min
o] -+ - CA,avg
o - - CA,min
S

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Complexity

Figure 12: The minimum and average fitnesses
achieved where the initial state is the same length as
the target pattern, and the target pattern is 500 bits
long. Lower is better, with 0 being a perfect score.
These results are from running 5000 evaluations.

20 40 60 80

—— CA

Percentage Success

)

_ A\

A\ A

—esasesamoodoats

0.0 0.2 04 0.6 0.8 1.0
Complexity

0
|

Figure 13: Success rate where the initial state is
the shorter than the target pattern, and the target
pattern is 50 bits long.

< _{—— DEV,avg

© |-&- DEV,min °

® |-+ CAavg /0/0/0’
@S | - CAmin e iy
Q 4 - A
SN _| o~ ..+ A
Tt © o/+_.+' A- KT-X--X

- _| /+ A’/Q"x

o - ,.X

/$ N e
o . -
S $__K__$ I I I I
0.0 0.2 0.4 0.6 0.8 1.0
Complexity

Figure 14: The minimum and average fitnesses

achieved where the initial state is the shorter than
the target pattern, and the target pattern is 50 bits
long. Lower is better, with 0 being a perfect score.

