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Abstract

Although intrinsic evolution has been shown to be ca-
pable of exploiting the physical properties of materials to
solve problems, most researchers have chosen to limit them-
selves to using standard electronic components. However, it
has been previously argued that because such components
are human designed and intentionally have predictable re-
sponses, they may not be the most suitable medium to use
when trying to get a naturally inspired search technique to
solve a problem. Indeed allowing computer controlled evo-
lution (CCE) to manipulate novel physical media can allow
much greater scope for the discovery of unconventional so-
lutions. Last year the authors demonstrated, for the first
time, that CCE could manipulate liquid crystal to perform
signal processing tasks (i.e frequency discrimination). In
this paper we show that CCE can use liquid crystal to solve
the much harder problem of controlling a robot in real time
to navigate in an environment to reach an obstructed desti-
nation point.

1 Introduction

It has been argued that evolution in hardware would ben-
efit from access to a richer physical environment [13], how-
ever much of the current research still focuses on conven-
tional component based evolution. Evolving in materio may
allow us to develop new systems that are based on exploit-
ing the physical properties of a complex system. In [20] we
saw that an evolutionary algorithm used some subtle phys-
ical properties of an FPGA to solve a problem. It is not
fully understood what properties of the FPGA were used.
This lack of knowledge of how the system works prevents
humans from designing systems that are intended to exploit
these subtle and complex physical characteristics. However
it does not prevent exploitation through artificial evolution.

In [6] Harding and Miller showed that liquid crystal
could be used as a medium for evolution. They were able

to rapidly evolve simple transistor like behaviour and in [5]
they demonstrated that it was relatively easy to evolve a lig-
uid crystal to discriminate between pairs of dissimilar fre-
quencies. The task was first considered by Adrian Thomp-
son (using an FPGA) [21]. In this paper we present work
demonstrating that it is possible to evolve a liquid crystal
display to perform as a sophisticated real time controller for
a wall avoiding robot.

2 The Field Programmable Matter Array

In [13] a device that the authors referred to as a Field
Programmable Matter Array(FPMA) was described. The
idea behind the FPMA is that applied voltages may induce
physical changes within a substance, and that these changes
may interact in unexpected ways that may be exploitable
under evolution.

Different candidate materials were cited for possible use
as the evolvable substrate in the FPMA. They all share sev-
eral characteristics : the material should be configurable by
an applied voltage/current, the material should affect an in-
cident signal (e.g. optical and electronic) and should be
able to be reset back to its original state. Examples of these
include electroactive polymers, voltage controlled colloids,
bacterial consortia, liquid crystal, nanoparticle suspensions.
In previous work we have demonstrated that liquid crystal
is indeed a suitable material to form the basis of the FPMA.

2.1 Liquid Crystal

Liquid crystal (LC) is commonly defined as a substance
that can exist in a mesomorphic state [3][9]. Mesomorphic
states have a degree of molecular order that lies between
that of a solid crystal (long-range positional and orienta-
tional) and a liquid, gas or amorphous solid (no long-range
order). In LC there is long-range orientational order but no
long-range positional order.

It is possible to control the orientation of liquid crystal
molecules using electric fields. Normally the molecules in
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a liquid crystal align themselves along a common director,
however this orientation is essentially random. By apply-
ing an electric field it is possible to change the angle of
this director and force the molecules to rotate into a desired
orientation. Changing the orientation of the liquid crystal
changes its behaviour. The most well known of these ef-
fects is the change in its optical properties. Rotating the
molecules changes the refractive index of the liquid, it is
this effect that is used in liquid crystal displays(LCDs). By
applying fields to specific parts of the LCD allows the field
affected region to change its optical properties from trans-
parency to opacity - this facilitates the formation of an im-
age.

Figure 1. Equivalent circuit for LC

Changing the orientation of the molecules also alters the
electrical properties of the liquid crystal. Figure 1 shows the
equivalent electrical circuit for liquid crystal between two
electrodes when an AC voltage is applied. The distributed
resistors, R, are produced by the electrodes. The capaci-
tance, C, and the conductance, G, are produced by the lig-
uid crystal layer[15]. Changing the orientation alters these
constants, and in this work we aim to exploit these electrical
properties (and possibly other properties) by using applied
fields to alter the molecular configuration.

3 An Evolvable Motherboard with a FPMA

3.1 Previous Evolvable Motherboards

An evolvable motherboard(EM) was a term first coined
by Layzell, [10] it is a circuit that can be used to inves-
tigate intrinsic evolution. The EM is a reconfigurable cir-
cuit that rewires a circuit under computer control. Previ-
ous EMs have been used to evolve circuits containing elec-
tronic components[10][1] - however they can also be used
to evolve in materio by replacing the standard components
with a candidate material.

An EM is connected to an Evolvatron ( a term coined
by Adrian Thompson). This is essentially a PC that is used
to control the evolutionary processes. The Evolvatron also
has digital and analog I/O, and can be used to provide test
signals and record the response of the material under evolu-
tion. In 2 we give a depiction of an evolvatron manipulating
a piece of liquid crystal.
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Figure 2. Equipment configuration

3.2 The Liquid Crystal EM

In the experiments presented here, a standard liquid crys-
tal display with twisted nematic liquid crystals was used as
the medium for evolution. The display is a monochromatic
matrix LCD with a resolution for 180 by 120 pixels. The
displays are made up of several layers, as shown in figure 3.
The liquid crystal layer(c) is sandwiched between the two
sheets which are coated in electric connections(b,d). These
layers are then positioned between two polarising filters,
one in a horizontal orientation(a) the other vertically(e).

(a) (b) (0) (d) (e)

Figure 3. Layers in a LCD

It is assumed that the electrodes are indium tin oxide.
Typically such a display would be connected to a driver cir-
cuit. The driver circuit has a configuration bus on which
commands can be given for writing text or individually ad-
dressing pixels so that images can be displayed. The driver
circuit has a large number of outputs that connect to the
wires on the matrix display. When displaying an image ap-
propriate connections are held high, at a fixed voltage - the
outputs are typically either fully on or fully off.

Such a driver circuit is unsuitable for our task of intrinsic
evolution. We need to be able to apply both control signals
and incident signals to the display, and also record the re-
sponse from a particular connector. Evolution should be
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Figure 4. The LCEM

allowed to determine the correct voltages to apply, and may
choose to apply several different values. The evolutionary
algorithm should also be able to select suitable positions to
apply and record values. A standard driver circuit would be
unable to do this satisfactorily.

Hence a variation of the evolvable motherboard was de-
veloped in order to meet these requirements.

The Liquid Crystal Evolvable Motherboard (LCEM) is
circuit that uses four cross-switch matrix devices to dynami-
cally configure circuits connecting to the liquid crystal. The
switches are used to wire the 64 connections on the LCD
to one of 8 external connections. The external connections
are: input voltages, grounding, signals and connections to
measurement devices. Each of the external connectors can
be wired to any of the connections to the LCD.

The external connections of the LCEM are connected to
the Evolvatron’s analogue inputs and outputs. Connections
can be assigned for the input signals, measurement, and for
fixed voltages (plus a ground connection). The value of the
fixed voltages is determined by a genetic algorithm[8&], but
is constant throughout each evaluation.

In these experiments the liquid crystal glass sandwich
was removed from the display controller it was originally
mounted on, and placed on the LCEM. The display has a
large number of connections (in excess of 200), however
because of PCB manufacturing constraints we are limited
in the size of connection we can make, and hence the num-
ber of connections. The LCD is therefore roughly posi-
tioned over the pads on the PCB, with many of the PCB
pads touching more than 1 of the connectors on the LCD.
This means that we are applying configuration voltages to
several areas of LC at the same time.

Unfortunately neither the internal structure nor the elec-
trical characteristics of the LCD are known. This raises the
possibility that a configuration may be applied that would
damage the device. The wires inside the LCD are made of

8 External Connectors

~_
LCD contacts,
32 per side

- 64 in total.

Liquid Crystal Display

8x16 Analog Switch Array/

Figure 5. Schematic of LCEM

an extremely thin material that could easily be burnt out if
too much current flows through them. To guard against this,
each connection to the LCD is made through a 4.7Kohm re-
sistor in order to provide protection against short circuits
and to help limit the current in the LCD. The current sup-
plied to the LCD is limited to 100mA. The software control-
ling the evolution is also responsible for avoiding configura-
tions that may endanger the device (such as short circuits).

It is important to note that other than the control circuitry
for the switch arrays there are no other active components
on the motherboard - only analog switches, smoothing ca-
pacitors, resistors and the LCD are present.

3.3 Evolved Robot Controllers

There are many examples of evolved robot controllers,
and in general they fall into one of three categories : Genetic
Programming, Evolved neural network (either with discrete
or continuous models) and Evolvable hardware.

A typical task for robot controller evolution is to produce
wall avoiding (or wall following) behaviour and there are
many examples of this in the literature [12, 11, 2, 16, 4, 17,
18, 19].

Generally evolution is performed in simulation. Solu-
tions based on genetic programming or neural networks
can run faster in simulation than those based on real robots,
as they can ignore (to a degree) the physical properties
of the robot and its hardware. However, in this instance
we cannot simulate the controller and have to perform
the control in hardware. In [19] Thompson demonstrates
that it is not only possible to evolve a robot controller in
hardware, but to evolve one that utilises the properties of
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a physical system. This work was based on his previous
research that demonstrated that evolution was capable of
“using the properties of the hardware that the designer
could never know about”. In the experiment, a control
system was evolved to move a robot, "Mr Chips”, around
an empty rectangular room without colliding with the
walls. The control hardware for Mr Chips is simply two
sonar distance sensors, two motor units and a RAM chip.
This RAM chips implements a version of a finite state
machine, described as a Dynamic State Machine (DSM).
The contents of the RAM chip are defined by evolution,
and provide a mapping between input and output states.
The outputs of the RAM chip are connected directly to
the motors, and the output addressing lines of the chip are
connected directly to the sonar outputs. All of the input
and output occurs asynchronously. Evolution was allowed
to define the operating frequency of the two clocks that are
required to transfer output from the DSM to the input of
the DSM and to control the motor speeds.

Using the DSM in this way removes the sen-
sory/control/motor functional decomposition. = Having
the inputs(sonar readings) and the outputs(motor pulses)
connected means that the “control system is intimately
linked to the dynamics of the sensor/motor signals and the
environment, with time now able to play an important role
throughout the system”.

The robot was operated in a kind of virtual reality. In order
to be able to exploit the physical properties of the robot the
experiments had to be performed intrinsically, however the
robot was kept stationery with sensor readings simulated
using a computer. Realistic levels of noise were added to
the sonar readings to increase the realism of the simulated
results. The robots wheels were allowed to run in free
air, with their speed measured and used to calculate the
movement of a virtual robot.

Figure 6 shows the behaviour of an evolved solution. The
bottom right hand image shows the result when the robot
is allowed to move around its environment and use the
the real sonar readings. Thompson comments “given that
the DSM receives the raw echo signals from the sonars
and directly drives the motors (one of which happens to
be more powerful than the other), with only two internal
state variables, then this performance in surprisingly good.”
There are many subtle interactions between components
in the system, and these cannot easily be discovered or
described. It does however appear that the operation of
this control system is dependent on the physical properties
of the hardware, and it for this reason that the following
experiments with robot control systems in liquid crystal
were performed. In liquid crystal there is no concept of
a program, and it is unclear how a neural network like
structure could be developed. Hence a control system that
utilises the properties of the system is required.

The following work takes a similar approach to Thompson,
however instead of using a RAM chip as the DSM, liquid
crystal is used. This is the first time that such an approach
has been taken.

Figure 6. Wall avoidance in virtual reality
and (bottom right) in the real world, after 35
generations.[19]

4 A Liquid Crystal Robot Controller

For convenience, a simulated robot was used for these
experiments. As the simulation could be considered to
occur in real time, a physical robot could be substituted as
the embodiment of the liquid crystal. However, real robots
would bring unnecessary complexity to this experiment.
The simulated robot has two such sensors (mounted with
30 degrees of separation) and two wheels for mobility. The
simulated sensor readings are converted into signals fed to
the evolvable motherboard. Signals read from the evolvable
motherboard are then used to control the behaviour of
the simulated robot. The intention being that the signal
processing, and majority of the robot control should be
performed in the liquid crystal. Figure 7 shows how the
liquid crystal is connected to act as a robot controller. Two
sonar distances sensors and two motors can be considered
to be “directly” connected to the evolvable motherboard,
and then routed to the liquid crystal. If implemented in real
hardware, extra circuitry would be required as the output
from the liquid crystal may not be suitable to drive the
motors directly.

We defined each distance sensor to output a square
wave with a frequency proportional to the distance in a
straight line from the sensor to an obstacle. For near objects
the output was 1Hz, for far objects the output frequency
is 5000Hz. No artificial noise is added to the distance
measured, however the mechanism by which the waves
are generated by the computer will add noise and timing
problems. There is also an expected S0ms delay between a
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Figure 7. Liquid Crystal Robot Controller

distance reading and a change in frequency.

Two connections from the LCEM are used as inputs to the
two motor controllers. The two motors are mounted either
side of the simulated robot, and allow for the robot to be
steered. If the voltage is high (i.e. above 0.3V) a motor is
switched fully on, low the motor is set to a slow speed. If
both inputs are high the robot drives forward, with both off
the robot is stationery. If only one motor is enabled, the
robot turns. The threshold voltage for enabling a motor was
chosen arbitrarily. The robot has a small turning circle, and
does not pivot on the switched off wheel.

S The Genetic Algorithm
5.1 The Genotype

The genetic representation for each individual is made
of two parts. The first part specifies the connectivity; the
second part determines the configuration voltages applied
to the the LCD.

Each of the 64 connectors on the LCD can be connected
to one of the eight external connectors or left to float (see
figure 5). Each of the connectors is represented by a number
from O to 7 and no connection is represented by 8. Hence
the genotype for connectivity is a string of 64 integers in the
range 0 to 8.

The remainder of the genotype specifies the voltages ap-
plied to the pins on the external connector that are not used
for signal injection / monitoring. One of the external con-
nectors is always connected to ground. Two are reserved
for the incident signals (distance readings) and two con-
nections for motor control. The remaining three connec-
tors have static voltages applied to them that are determined
by evolution. All these connectors can be routed to various
places in the liquid crystal display according to the connec-
tion scheme decided by evolution (as described in the pre-
vious paragraph). Each voltage is represented as a 16-bit

integer, the 65536 possible values map to the voltage lev-
els output from -10V to +10V. The second section of the
genotype is therefore represented as a string of three 16bit
integers.

To clarify this further, the evolutionary algorithm deter-
mines three possible voltages and where they may be ap-
plied to any of the 64 connectors on the LCD. The algo-
rithm also determines to which of the connectors on the
LCD the incident signals will be applied, the connector used
to read the output signals from and which connectors should
be grounded.

In contrast to previous work, where the liquid crystal had
one input and one output these experiments require two in-
puts and two outputs. This reduces the number of configu-
ration voltages to 3 (since we used the same LCEM as that
used in our previous frequency discriminator experiments).

5.2 Constraints

To help prevent damage and misreading output signals,
the genotype has to be limited to configurations that will not
be harmful to its phenotypic expression, for example short-
ing connections together. To achieve this certain connec-
tions (for example where the output is measured) are limited
to a certain number of appearances within the genotype.

By preventing the genotype from going outside these
constraints it is hoped that no damaging configurations can
be downloaded into the LCEM. We also only allow the sen-
sor signals and motor outputs to be connected to a single
place in the LCD (subject to the ambiguity caused by inac-
curate physical mounting previously discussed.

Unconstrained, the number of possible configurations is
964 X248.

5.3 Genetic Operators

A mutation is defined as randomly taking an element in
one part of the genotype and setting it to a randomly se-
lected new value. Constraints are enforced to prevent illegal
configurations.

We chose not to use genetic recombination as the con-
straints imposed on this representation would make it dif-
ficult to implement and would require many arbitrary deci-
sions to be made concerning suitable repair techniques. For
example, it is unclear what strategy should be used to fix a
genotype where multiple connections on the LCD are linked
to the analogue recorder and where only one connection is
allowed. For this reason, the evolutionary algorithm used
here has no crossover operator.

5.4 Parameters

In all the following experiments, a population of 40 indi-
viduals was used. The mutation rate was set to 5 mutations
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per individual. Elitism was used, with 5 individuals selected
from the population going through to the next generation.
Selection was performed using tournament selection based
on a sample of 5 individuals.

Evolutionary runs were limited to 200 generations. With
each individual taking approximately 60 seconds to evalu-
ate.

6 The Fitness Function

Typically for obstacle avoiding robots, fitness values
are computed based on factors such as time spent moving
forward, total path length and Euclidean distance travelled.
For example, Thompson uses the following calculation:

17 , ,
fitness = T/ (e_kw%(t)z + e kuey®? _ s(t))
0

_ lwhenstationary

where S(t) " Ootherwise

Where the distance of the robot from the centre of the
room in the = and y directions at time ¢ was ¢, and c,;, then
after an evaluation for 7" seconds. However, during initial
experiments it was appeared that this method for calculating
fitness had many drawbacks including local minimas which
resulted in poor evolutionary characteristics (e.g. mean fit-
ness did not increase smoothly). In environments with ob-
stacles this style of fitness function fails to capture the diffi-
culty of getting to hard-to-reach locations in the map. To ad-
dress this a fitness map of the environment was calculated,
where each area in the map had an absolute measure of the
difficulty in reaching that point. The fitness for the robot
was calculated as the highest fitness measure seen during
the robot’s movement around the map.

The fitness values for the map were calculated by mod-
elling chemical diffusion within the environment. Although
it may be difficult to see the variation in colour, figures
9 and 11 show the fitness maps for the two environments
used. The darker colours show the areas of greatest diffi-
culty to reach from the robots starting position in the top
left corner. Robots that can successfully navigate around
the obstacles, and explore large amounts of the map will
pass through areas marked as having high fitness. Solutions
where the robot does not move far or travels in a circle will
obtain low fitness. In these experiments the robots were al-
lowed to travel until they collided with a wall, or a timeout
situation occurs. Robots were initially given 30 seconds be-
fore timing out, with extra time awarded if they travelled
into new parts of the map.

In [7], a robot controller is evolved using Cartesian Genetic
Programming, with the fitness function used here. It was
found that the smoother fitness landscape allowed for rapid
evolution.

Figure 8. Map 1

Figure 9. Fitness values for map 1

7 Results

The results for solving the first map are shown in table

??. Solutions that have a fitness of over 6700 represent
robots that have navigated to leave the top section of the
map. Solutions below this score fail to fully explore the
map - however they may cover large areas of the top half
of the map but never escape through the gap. The five so-
lutions that do escape, continue and fully explore the map.
This gives a success rate of 36%. The average number of
generations to find a good solution is 62, with the fastest
solution found within 22 generations.
In figure 12 graphs are shown that illustrate the evolution
of each run. It can be seen that the fitness often increases
rapidly - with the overall fitness increasing in several (on
average 5) of these steps. These jumps in fitness suggest
that only small changes are needed in the genotype to cause
large changes in the phenotype. As we are able to evolve
solutions, there must be a strong relationship between the
genotype/phenotype mapping - however it must be a highly
nonlinear mapping. Such a genotype-phenotype mapping
would make training the liquid crystal by hand, or with an-
other machine learning technique, very difficult as it would
be hard to predict the outcome of a parameter change - es-
pecially when so many parameters are available.

Figures 13 to 23 shows sections of the “fossil record”
of the evolution of one controller (result N). We can see that
after learning not to drive in circles, the robot learns to move
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Figure 10. Map 2

Figure 11. Fitness values for map 2

forward, and then learns to turn when it approaches a wall.
After it learns to start following the wall it quickly searches
the entire map, and gets the highest fitness.

7.1 Generalisation

The robot controllers were also tested to see if the be-
haviour generalised. To do this, the evolved robot controller
were also tested in a second, unseen environment. This map
is shown in figure 10. It was found that 35% of evolved so-
lutions correctly navigated the second map.

7.2  Symmetry in wall following behaviour

An interesting observation we made after examining the
robot results was the symmetry of wall following behaviour.
The behaviour of the robot on both sides of the obstacle
is similar. Figures 24,25 and 26 show some examples of
this. This behaviour appears to demonstrates that a consis-
tent and generalised control system has been developed. If
the robot had “’learnt” the map, it would be unlikely for it to
follow the same behaviour when presented with the similar
but ”‘inverted”” environmental features.

Experiment | Maximum Fitness | Generation
A 6696 68
B 6695 197
C 5431 74
D 6700 47
E 5797 14
F 6690 80
G 6667 42
H 5050 20
I 10000 46
J 10000 73
K 9056 74
L 10000 97
M 4542 68
N 9958 22

Table 1. Summary of experiment results,
showing for each experiment the maximum
fitness and the generation at which that fit-
ness was achieved.

8 Comparison to Cartesian Genetic Pro-
gramming

In [7] maps using the same robot simulator are solved
using a robot controlled by an evolved program (i.e. no
liquid crystal). In this work Cartesian Genetic Program-
ming(CGP) was used to evolve a graph based control
scheme for the robot. A complete description of CGP can
be found in [14]. Using CGP the success rate was 100%
(based on 100 runs) for this map - with the average time to
find a solution of 10 generations.

There are several key differences in the implementation of
the CGP robot controller compared with the work presented
here. The first difference is the lack of real time control.
The robot controlled by liquid crystal could be considered
to be controlled in real time, where the robot controlled by
CGP moved in individual time steps, with the CGP pro-
gram was run between time steps. We would expect a real
time controller to be a harder task than a discrete time con-
troller. When evolving using CGP, the robot has access to
many different mathematical operators - liquid crystal, we
assume, does not have this well defined functionality built
in. Evolution, if it wishes to use such operators, would first
have to evolve them in the liquid crystal. The third differ-
ence is the manner in which sonar readings are passed to
the controller. The liquid crystal receives the information
as a square wave signal whose frequency is dependent on
distance. The CGP program is given the actual distance as
an integer. This removes even more time dependence from
the problem. We would assume the liquid crystal would
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Figure 12. Evolution of controller

need to perform some sort of integration to understand the
distance readings, but the CGP program essentially has this
work performed for it. Another major difference is the ab-
sence of noise - the real world controller is likely to suffer
from various types of noise from sensors, cables and digital-
analogue conversions. If implemented with a real robot, the
CGP controller may perform worse as it was not evolved
with noise in the system.

These differences demonstrate that evolving a controller in
liquid crystal is not a simple task when all the differences
are considered. We would expect a CGP controller that had
all the constraints and limitations of the liquid crystal to take
far longer to evolve.

9 Conclusions

We have demonstrated, for the first time, that it is pos-
sible to evolve a robot controller in liquid crystal. The task
is significantly harder than that of our previous work with
liquid crystal (if only because the number of inputs and out-
puts to the display device has been doubled). Yet we found
that it was relatively easy (in evolutionary terms) to evolve
a sophisticated robot controller.

The quality of results when compared to previous work is
also high. The environment is more complex than that of
[19] and unlike much work on evolving GP robot controllers
or neural network controllers, we solve a real-time control
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task. The results also indicated an evolutionary computa-
tional effort that is comparable to other examples of evolved
controller (with simpler tasks). We feel our work, aside
from its novelty, demonstrates that evolution in materio of-
fers some advantages over more traditional techniques. In
future work we intend to explore a wider variety of tasks
and demonstrate more examples using liquid crystal as an
evolvable platform. We also intend to construct our own
purpose built in materio chamber so that we can investigate
other materials and also have more control over the way we
can configure the material.
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Figure 24. Symmetry in
wall following behaviour:
fitness=9993

Figure 25. Symmetry in
wall following behaviour:
fithess=9594

Figure 26. Symmetry in
wall following behaviour:
fitness=9862

References [13] J. FE. Miller and K. Downing. Evolution in materio: Look-

(1]

(2]

J. Crooks. Evolvable analogue hardware. Meng project re-
port, The University Of York, 2002.

R. Dain. Developing mobile robot wall-following algo-
rithms using genetic programming. In Applied Intelligence,
volume 8, pages 33—41. Kluwer Academic Publishers, 1998.

(14]

ing beyond the silicon box. In Proceedings of NASA/DoD
Evolvable Hardware Workshop, pages 167-176, 2002.

J. E. Miller and P. Thomson. Cartesian genetic program-
ming. In R. Poli and W. B. et al., editors, Proc. of EuroGP
2000, volume 1802 of LNCS, pages 121-132. Springer-
Verlag, 2000.

[3] D.Demus, J. Goodby, G. W. Gray, H. W. Spiess, and V. Vill, (151 A.' F..Naumov, M. Y Loktev, I R Guralnik, and G. Vdov%n.
. Lo Liquid-crystal adaptive lenses with modal control. In Optics
editors. Handbook of Liquid Crystals, volume 1,2A,2B,3. Letters, volume 23, pages 992-994, 1998
July 1998. . . [16] P. Nordin and W. Banzhaf. Genetic programming control-
[4] M. Ebner. Evolution of a control architecture for a mo- ling a miniature robot. In E. V. Siegel and J. R. Koza, ed-
bile robot. In Proceedings of the Second International . . ) s S e
. itors, Working Notes for the AAAI Symposium on Genetic
Conference on Evolvable Systems: From Biology to Hard- Programming, pages 61-67, MIT, Cambridge, MA, USA
ware (ICES 98), Lausanne, Switzerland, pages 303-310. 1012 1995 AAAI ’ ’ ’ ’ ’
Sprmger-Verlag, 1998. . L . [17] C. W. Reynolds. An evolved, vision-based behavioral model
51 Sj H?.rd.lng an<.:1 J'.F' Mlller. Evolution in materllo. A tone of obstacle avoidance behaviour. In C. G. Langton, editor,
discriminator in hqfnd crystal. In In Proceedings of the Artificial Life III, volume 16 of SFI Studies in the Sciences
Congress on Evolutionary Computation 2004 (CEC’2004), of Complexity. Addison-Wesley, 1993.
volume 2’ pages 180071_807’ 2004. o ) . [18] C.W. Reynolds. Evolution of corridor following behavior in
[6] S. Harding and J. F. Miller. Evolution in materio: Initial a noisy world. In Simulation of Adaptive Behaviour (SAB-
experiments with liquid crystal. In Proceedings of 2004 94), 1994
NASA/DoD Conference on Evolvable Hardware (EH'04), [19] A. Thompson. Evolving electronic robot controllers that
pages 298_305» 2004. . . exploit hardware resources. In F. Morén, A. Moreno, J. J.
[7] S.‘Hardlng ?nd J. F.‘Mlller. qulutlon of robot controller Merelo, and P. Chacon, editors, Advances in Artificial Life:
using cartesian genetic programming. In 7o be published in Proc. 3rd Eur. Conf. on Artificial Life (ECAL95), volume
proceedings of EURO GP 2005, 2005. . 929 of LNAI, pages 640—-656. Springer-Verlag, 1995.
[8] J. H. Holland. Adaptation in Natural and Artificial Systems: [20] A. Thompson. An evolved circuit, intrinsic in silicon, en-
An Introductory Analysis with Applications to Biology, Con- twined with physics. In ICES, pages 390-405, 1996.
trol and Artificial Intelligence. MIT Press, Cambridge, MA, [21] A. Thompson. An evolved circuit, intrinsic in silicon, en-

(9]

[10]

[11]

[12]

USA, 1992.

I. C. Khoo. Liquid Crystals: physical properties and non-
linear optical phenomena. Wiley, 1995.

P. Layzell. A new research tool for intrinsic hardware evolu-
tion. Proceedings of The Second International Conference
on Evolvable Systems: From Biology to Hardware, LNCS,
1478:47-56, 1998.

C. Lazarus and H. Hu. Using genetic programming to evolve
robot behaviours, 2001.

M. J. Mataric. A distributed model for mobile robot
environment-learning and navigation. Technical report,
Cambridge, MA, USA, 1990.

twined with physics. In T. Higuchi, M. Iwata, and L. Weixin,
editors, Proc. 1st Int. Conf. on Evolvable Systems (ICES’96),
volume 1259 of LNCS, pages 390—405. Springer-Verlag,
1997.

10

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05)
0-7695-2399-4/05 $ 20.00 IEEE



