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Abstract. Cartesian Genetic Programming is a graph based representa-
tion that has many benefits over traditional tree based methods, includ-
ing bloat free evolution and faster evolution through neutral search. Here,
an integer based version of the representation is applied to a traditional
problem in the field: evolving an obstacle avoiding robot controller. The
technique is used to rapidly evolve controllers that work in a complex en-
vironment and with a challenging robot design. The generalisation of the
robot controllers in different environments is also demonstrated. A novel
fitness function based on chemical gradients is presented as a means of
improving evolvability in such tasks.

1 Introduction

Cartesian Genetic Programming is a graph based representation that has many
benefits over traditional tree based methods, including bloat free evolution and
faster evolution through neutral search. In this paper we apply this represen-
tation to a robot control task. In this section the representation is discussed -
including a comprehensive survey of existing work on Cartesian Genetic Pro-
gramming(CGP) and we look at previous work in evolving robot controllers
using genetic programming. We describe the benefits of this representation over
traditional techniques. The algorithm and novel fitness function are discussed in
section 2l In section 3] we apply apply CGP to various robot tasks and demon-
strate generality in evolved solutions.

1.1 Cartesian Genetic Programming

Cartesian Genetic Programming [13] is a graph based form of Genetic Program-
ming that was developed from a representation for evolving digital circuits [7,[].
In essence, it is characterized by its encoding of a graph as a string of integers
that represent the functions and connections between graph nodes, and pro-
gram inputs and outputs. This gives it great generality so that it can represent
neural networks, programs, circuits, and many other computational structures.
Although, in general it is capable of representing directed multigraphs, it has so
far only been used to represent directed acyclic graphs. It has a number of fea-
tures that are distinctive compared with other forms of Genetic Programming.
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Foremost among these is that the genotype can encode a non-connected graph
(one in which it is not possible to walk between all pairs of nodes by following
directed links). This means that it uses a many-to-one genotype-phenotype map-
ping to produce the graph (or program) that is evaluated. The genetic material
that is not utilised in the phenotype is analogous to junk DNA. As we will see,
mutations will allow the activation of this redundant code or de-activation of it.
Another feature is the ease with which it is able to handle problems involving
multiple outputs. Graphs are attractive representations for programs as they are
more compact than the more usual tree representation since subgraphs can be
used more than once.

CGP has been applied to a growing number of domains and problems: digital
circuit design [I1L[12], digital filter design [§], image processing [21], artificial life
[20], bio-inspired developmental models [9L[14}[10], evolutionary art [1], molecular
docking [4] and has been adopted within new evolutionary techniques cell-based
Optimization [19] and Social Programming [24]. In addition a more powerful
form of CGP with the equivalent of Automatically Defined Functions is also
being developed [25].

Figure [ shows the general form of Cartesian Program for an n input m-
output function. There are three user-defined parameters: number of rows (r),
number of columns (c) and levels-back (which defined how many columns back a
node in a particular column can connect to). Each node has a set of C; connection
genes (according to the arity of the function) and a function gene f; which defines
the nodes’s function from a look-up table of available functions. On the far left
are seen the program inputs or terminals and on the far right the program output
connections O;
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Fig. 1. General form of Cartesian Program

If the graphs encoded by the Cartesian genotype are directed (as in this work)
then the range of allowed alleles for C; are restricted so that nodes can only
have their inputs connected to either program inputs or nodes from a previous
(left) column. Function values are chosen from the set of available functions.
Point mutation consists of choosing genes at random and altering the allele to
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another value provided it conforms to the above restrictions. Although the use
of crossover is not ruled out, most implementations of CGP (including this one)
only use point mutation.

We emphasize that there is no requirement in CGP that all nodes defined
in the genotype are actually used (i.e. have their output used in the path from
program output to input). Although a particular genotype may have a number
of such redundant nodes they cannot be regarded as non-coding genes, since
mutation may alter genes “downstream” of their position that causes them to
be activated and code for something in the phenotype, similarly, formerly active
genes can be deactivated by mutation. We refer genotypes with the same fitness
as being neutral with respect to each other. A number of studies (mainly on
Boolean problems) have shown that the constant genetic change that happens
while the best population fitness remains fixed is very advantageous for search
([1323,26] ).

1.2 Obstacle Avoiding Robots

A common test problem in genetic programming involves generating a program
that can control a robot. Typically, the task is to travel around a closed envi-
ronment avoiding the walls and any obstacles [6[2)[L5][3,[16,[17,22L[18]. The task
may be extended to getting the robot to cover as much floor space as possible or
to follow the wall. In this scenario the robot has to navigate around an unknown
environment avoiding contact with the walls. The control system is able to use
the distance sensors on the robot, perform some form of signal processing and
in turn control the motion of the robot. Two common robotic platforms are the
Khepera miniature robot or a gantry style robot, such as those from iRobot.
Both of these types of robots have an array of distance sensors. The Khepera
has 8 short range infra red sensors, the gantry robot because of its larger size can
accommodate 24 sonar sensors. Generally evolution is performed in simulation.
Solutions based on genetic programming and neural network architectures can
be run in faster than real time in simulation, as they can ignore (to a degree)
the physical properties of the robot and its hardware. A simple obstacle avoiding
robot was evolved by Koza in [5]. In this task, a robot had to move around an 8
by 8 grid and avoid obstacles - in order to mop the floor of a room. The obstacles
were cells in the grid that the robot was not allowed to enter. The robot is able
to move forward one cell, leap forward several cells, turn left, check to see if an
obstacle is directly in front and addition (with modulo 8 integer arithmetic). The
fitness was calculated as the number of squares visited in a fixed period of time.
Without the use of automatically defined functions (ADFs), it took fewer than
50 generations to evolve a successful behaviour, with ADFs this result was low-
ered to 29 generations. However, Koza uses relatively large populations - in this
example each population contained 500 individuals. The function set available
to the system was quite basic. Lazarus and Hu also used a grid based system
to evolve robot controllers. In [6] Lazarus and Hu evolved wall following robots,
that could find, then move around the edge of a room. The room was a square
room, with a number of extrusions in the walls. The most complex map had
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four extrusions - where each wall was interrupted by a section projecting into
the centre of the room. The program could move the robot to adjoining cells and
sense the state of those cells. To process the sensor information, the function set
included IF, AND, OR and NOT. Using a population of size 1000, solutions for
the most complex room were evolved in 90 generations. In [I6] Reynolds uses
genetic programming (GP) to evolve a program that can take visual information
and control a simulated robot that avoids obstacles. The input to the program
was a simple sensor that measures how strongly an object is seen in a particular
direction. This information is then processed using basic mathematical opera-
tions and conditionals. The program output allowed the robot to drive forward
and turn. In this example, the robot was simulated, however, in [I5] this style of
control was used to control a real robot. The input terminals were readings from
the distance sensors of the Khepera robot. In [3], Ebner evolves a controller for
a gantry style robot using genetic programming. The distance readings from 24
sensors were mapped into 6 virtual sensors and these were used as terminals in
the GP program. Output terminals for movement are restricted to go forward,
stop and turn. To allow for the evolution of a hierarchical control mechanism the
program could make use of conditional statements, which allows for greater pro-
gram complexity. The task was to navigate around a short stretch of a straight
corridor without colliding with the walls. With the robot running in simulation,
evolution was performed for 50 generations on a population of 75 individuals.
When the process was moved into a physical robot, evolution took a long time
(197 hours) and produced similar results to the simulated work. In [I5], Nordin
and Banzhaf apply genetic programming to evolving robot controllers in a real
environment. The program was encoded as a binary string and evolved using
a standard genetic algorithm The function set comprised of ADD, SUB, MUL,
SHL, SHR, AND, OR, XOR and integer terminals. A population size of 30 was
used, and successful individuals were found within 200 to 300 generations. A
pleasure-pain fitness function was used. The robot received pleasure from go-
ing straight and fast, and pain from coming close to the obstacles. The scores
from this pleasure/pain reward are then weighted and summed to produce an
overall fitness. In this work, we present a robot, with fine grained control, sev-
eral environments of greater complexity to those described above. We show that
CGP is suitable for controlling the robot, and that the results are competitive
to previous techniques.

2 Algorithm

2.1 The Robot

The simulated robot used in this set of experiments is similar to a Kephera robot.
There are two wheels driven by motors, these motors can turn in either direction
and are variable speed. Driving both motors in the same direction (and speed)
moves the robot forward or backward in a straight line. By using different speeds
the robot can be made to turn, turning motors in opposite directions increases
the turning speed. The robot is equipped with two distance sensors mounted
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on the front, which are separated by an angle of 20 degrees. The sensors return
the distance to the nearest wall in the direction they are pointed. There is no
grid representation used in this simulation (other than for the fitness function),
and the robot can move anywhere to within the resolution of double precision
floating point numbers. The robot’s orientation is also defined by a real number.

2.2 Function Set

For these experiments we use an integer version of CGP, in which the nodes
operate on signed integer values and output signed integer values. The levels
back parameter has been set for the whole width of the graph, and multiple
rows are used. The nodes in the CGP graph can use the following functions:
Add, Subtract, Multiply, Divide, Compare, Min, Max, Fixed integer and Input
node. Add, subtract, multiply and divide are all two input nodes that perform
integer arithmetic. The divide function performs integer division and is safe:
dividing by 0 returns 0. Min and max respectively output the minimum and
maximum of the two inputs to that node. Compare returns -1 if the first input
is less than the second, 0 if the inputs are equal and +1 if the first input is
larger than the second. Some nodes can store a fixed integer in the range -100
to +100. These are terminal nodes, i.e. nodes with no inputs. The first column
in the CGP graph is made of input nodes. The speed used to drive the motors
was taken from 2 nodes on the last column in the graph. The integer value for
each node was found, truncated to fall between -100 and 100 and then scaled to
a value between -1 and +1.

2.3 Operators, Parameters and Fitness Function

The evolutionary algorithm used for these experiments is very simple. The popu-
lation size was set to 40 individuals. Elitism was used, with the best 5 individuals
retained for the next generation. Tournament selection was used, with a tourna-
ment size of 5. No crossover was used when generating subsequent populations.
Mutation was set to 5 percent of the node count, with entire nodes being mu-
tated in each operation. Evolutionary runs were limited to 1000 generations,
with each run being aborted when a solution was found i.e. when an individual’s
fitness was greater than 9995. For these experiments, the CGP graph was set to
20 nodes wide by 2 nodes tall. The first column of the graph is used for input
nodes, leaving 38 nodes to perform processing. Typically for obstacle avoiding
robots, fitness values are computed based on factors such as time spent mov-
ing forward, total path length and Euclidian distance travelled. For example,
Thompson[22] uses the following calculation:

0 otherwise

T
fitness = %/ (eszcz(tﬁ T efkycy(t)2 . S(t)) where S(t) __1 when stationary
0

where the distance of the robot from the centre of the room in the x and y
directions at time ¢ was ¢, and c,, for an evaluation for 1" seconds. However,
during initial experiments it appeared that this method for calculating fitness
had many drawbacks including local minima which resulted in poor evolutionary
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characteristics (e.g. mean fitness did not increase smoothly). In environments
with obstacles this style of fitness function fails to capture the difficulty of getting
to hard to reach locations in the map. To address this a fitness map of the
environment was calculated, where each area in the map had an absolute measure
of the difficulty in reaching that point. The fitness for the robot was calculated
as the highest fitness measure seen during the robot’s movement around the
map. The calculation for this fitness map was performed by modeling chemical
diffusion within the environment. If we imagine the room to be filled with a
fluid such as water, and then add some coloured ink in a particular location,
the colour would diffuse through the water. Near the point where the dye was
added, the concentration would be greatest, the further away from the source
the lower the concentration. The actual concentration (after a period of time)
at a point is related to the shortest possible path to the point where the dye
was added. Using a model of diffusion, we can easily approximate the shortest
path required to reach any point in the map. This model automatically takes
into account any shape of environment and the obstacles within it. By adding a
”dye” at the starting position of the robot, and allowing it to diffuse until the
chemical level at all points in the map is above 0 percent, an absolute fitness
can be calculated for the map.
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Fig. 2. Plot of fitness against distance from start position. The gradient on the right
can be used a key for figures @ and

The diffusion algorithm works by breaking the map area into a grid (in this
experiment of size 500 x 500) which stores the amount of chemical in each part
of the map, initially all cells are set to 0. The diffusion is calculated using a
simple cellular automata style technique. For each cell, if the average amount of
chemical in its eight neighbouring cells is greater than the amount in that cell
then the amount of chemical in the cell is increased. When all the cells contain
some chemical, the map is normalised so that the fitness score falls between 0 and
10000, with 10000 being the maximum fitness. Figure 2] shows the relationship
between fitness and distance from the starting position. The gray-scale gradient
on the right shows the colour corresponding to the fitness value, and is used in
the fitness maps throughout this paper. Figures Bl and [ show the fitness maps
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for the two environments used. The darker colours show the areas of greatest
difficulty to reach from the robots starting position in the top left corner. Robots
that can successfully navigate around the obstacles, and explore large amounts of
the map will pass through areas marked as having high fitness. Solutions where
the robot does not move far or travels in a circle will obtain low fitness. In these
experiments the robots were allowed to travel until they collided with a wall, or
a timeout situation occurs i.e. the simulation has been updated 10000 times.

Fig.3. Map 1 Fig. 4. Fitness values for map 1

Fig. 5. Escape Map Fig. 6. Fitness values for the escape map

3 Experiments

3.1 Escaping a Room

The first problem involves the robot escaping from a small room. Figure [f] shows
the layout of the room, with the robot starting in the centre of the map. It
should be noted that all the map images are drawn to the same scale.

Results. 140 runs of the algorithm were performed, with 81% of evolutionary
runs providing a solution within 1000 generations. We found the average number
of evaluations required for a solution to be 8515, however the standard deviation
was high (8091) - the minimum time to discover a solution was 8 generations. On
reviewing some of the paths taken by the robot, it was seen that some became
stuck in the bottom part of the maze. As the population converged, it would
have become harder to escape this local optimum. With the neutrality in CGP,
the represenation is more robust to this type of situation - even in converged
populations, small mutations can produce large changes in phenotypic behaviour.
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In this problem scenario, it is expected that there are many local optima, and
with the high success rate it is clear that CGP is capable of escaping these.

The following is a sample program for a good solution. Motorl and motor2
are the motor speeds of the left and right motors. INPUT_0 and INPUT_1 are the
two distance sensor readings. The remaining functionality is described previously.
An interesting observation from this is the reuse of the node -25. A non-graph
based representation would not easily allow for this and would have to replicate
the node. But here GCP can reuse nodes, and share subgraphs that are integral
to the behaviour of both motor controllers. In the motorl control program, it
appears evolution has used this node to manufacture a 0 rather than evolve a
integer node with a value of 0.

motoril= ADD(MINUS(-25 , -25), MULT(ADD(INPUT_O, -25),
MIN(INPUT_1, INPUT_0)))
motor2=ADD (MINUS (ADD (INPUT_O, MAX(MIN(MIN(INPUT_1, INPUT_O),
MIN(INPUT_1, INPUT_0)), -25 ), 18), MINUS(MIN(INPUT_1, INPUT_O),
MIN (ADD(MINUS (INPUT_O, INPUT_0), MULT(MAX(MIN(MIN(INPUT_1, INPUT_O),
MIN(INPUT_1, INPUT_0)), -25), MAX(MIN(MIN(INPUT_1, INPUT_O),
MIN(INPUT_1, INPUT_0)), -25))), ADD(INPUT_O, -25))))

If we take the above programs and turn them into a more human readable
form, we find the following rules have been evolved.

IF INPUT_O <= INPUT_1 THEN
motorl := INPUT_O ( INPUT_O - 25 )
ELSE
motorl :
ENDIF

INPUT_1 ( INPUT_O - 25 )

IF INPUT_O <= INPUT_1 THEN
motor2 := (2 * INPUT_O) - 43
ELSE
IF (INPUT_1 ~ 2) <= (INPUT_O - 25) THEN
motor2 := INPUT_O + (2 * INPUT_1) - (INPUT_1 ~ 2) - 18
ELSE
motor2 := (2 * INPUT_1) - 43
ENDIF
ENDIF

The program for motorl is very simple. If INPUT_0 detects a wall, then the
speed of the motor is negative - and the robot will start to turn. Otherwise the
motor is on in a forward direction. For motor2 the program is slightly more
complex. However, it still has the same basic functionality - the motor speed
is dependent on the value of sensor that is nearest the wall. However, motor2
appears to have it’s speed regulated to ensure that in general it is going forward,
and to slow down when INPUT_1 detects a wall. This code demonstrates a
sophistication beyond the binary control of Braitenberg type vehicles - in this
result the robot speeds up and slows down depending on the current state of its
Sensors.
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Fig. 7. Evolutionary history of maze solving behaviour
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Fig. 8. Distribution of peak fitness scores during evolution, for the initial maze problem
(figure B))

3.2 Solving a Maze

The challenge in this scenario is for robot to solve a complicated maze. The
maze, shown in figure [3] has many tight u-bends which are placed at different
orientations. Figure [ shows the fitness scores throughout the map.

Out of 140 runs, 51% of the runs produced individuals with perfect fitness.
For each run the maximum fitness obtained and the number of evaluations re-
quired to reach that fitness were logged. The average fitness evolved was 8722
(with a standard deviation of 1635). Figure B shows the distribution of fitness
scores, and from these results we can see that the least successful robots all man-
aged to make their way around the first bend before crashing or looping back on
themselves. The range 6500-7000 contains 26 individuals. Based on their average
fitness of 6932, we can see that the robots fail to navigate into the second half of
the map - where the walls change from vertical to horizontal. The ability to see
where the local optima are is a useful feature of the fitness function. Without hav-
ing to plot all the runs onto a map and observing where the robot becomes stuck,
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we can use the absolute fitness values on the fitness map to locate any trouble
spots in the environment.

3.3 Generalisation of Evolved Behaviour

It is important to demonstrate that the solutions evolved generalise to different
starting conditions. In this experiment we perform two tests for generalisation.
In the first, evolution is allowed to solve the maze problem and on success the
evolved program is tried from a different starting position. The second starting
position is on the right hand side of the map, half way down. The fitness map
for this starting condition is shown in figure [@ - the point of highest fitness is
now in the top left of the map.

Fig. 9. Fitness values for the maze - start- Fig. 10. Solution to the reverse maze prob-
ing at different location lem

Fig. 11. Fitness values for the unseen Fig. 12. Example behaviour of robot in
environment unseen enivronment

In the second test the robot is evolved to solve the original maze, and then
is put into a different environment, the map with fitness values is shown in
figure [[11 The maze incorporates features not seen in the previous maps - e.g.
walls at angles. In both these scenarios the second test is performed as soon as
a solution for the first map has been evolved. We do not allow further evolution
to occur.
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For the first test of generalisation, from 70 evolutionary runs it was found
that 97% of programs that evolved to solve the first map successfully completed
the maze when started from a different location. With the new environment,
91% of programs that can complete the first maze can fully explore the second
maze. This shows that the evolved programs have achieved a high degree of
generalisation.

4 Conclusions

This work has demonstrated the suitability of CGP for control applications.
Although it is most often misleading to directly compare results (because of
different simulators, environments and methodologies), the results indicate that
CGP is highly competitive when compared to previous results using traditional
GP. In future work we hope to use CGP to control a physical robot, and to
perform the entire evolutionary algorithm in hardware. Currently, we are working
on an FPGA implementation of the algorithm, which could be used with the
Kephera robots.
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