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Abstract

We investigate a preliminary model of gate-like
components with added random noise. We refer to these
types of components as messy. The principal idea behind
messy gates is that evolving circuits using messy gates may
confer some beneficial properties, one being fault-
tolerance. The exploitation of the physical characteristics
has already been demonstrated in intrinsic evolution of
electronic circuits. This provided some of the inspiration
for the work reported in this paper. Here we are trying to
create a sSmulateable world in  which "physical
characteristics' can be exploited. We are also trying to
study the question: What kind of components are most
useful in an evolutionary design scenario?

1 Introduction

Natural evolution has produced the most subtle and
complex bio-chemical information processing machines
known (i.e. living creatures). In addition to this complexity
living systems possess a remarkable degree of fault
tolerance and robustness. At this point it is necessary to
clarify the exact meanings of the terms: fault-tolerance and
robustness. Robustness deals primarily with problems that
are expected to occur and must be protected against. By
contrast, fault tolerance primarily deals with problems that
are unexpected. Humans can design systems to be robust
but true fault tolerance is a much more difficult problem.
Thisis particularly acute in digital electronics. Digital gates
are robust from the point of view of minor changes in input
voltages but systems built from them are fragile to stuck-at
faults.

Another aspect of human designed systems is that they
are usualy built from production line components
(especialy if they are electronic). Living systems are built
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from components (i.e. cells) that vary considerably in their
properties. It is now recognised that many of the
advantageous properties of living systems emerge from the
way in which the individual properties of the componentsis
exploited.

Artificia neural networks (ANN) were one of the first
bio-inspired circuits to be developed. It has been suggested
that ANNSs exhibit graceful degradation in the presence of
faults [1]. However more recent work has indicated that
ANNs are not intrinsically fault tolerant [6, 11].

In recent decades the use of design algorithms that
employ the principles of Darwinian evolution have been
applied to the design of electronic systems [2,5,12,13].
Such work has become known as Evolvable Hardware. One
of the most intriguing findings in this field is that of Adrian
Thompson [7]. He showed that it was possible for artificial
evolution to create FGPA designs that exploited the
physical characteristics of the silicon substrate to efficiently
cary out a paticular task. Thompson found that
unconstrained artificial evolution explored very unusual
ways of solving problems precisely because it was able to
exploit the subtle and incidental physical characteristics. It
can be argued that evolution has produced such complex
systems because it can make use of the full, unmodellable
richness of the physical world.

Another question raised from Thompson's work is the
following: What basic components should we be using in
artificial evolution? It does not seem very likely that the
electronic components that have been created for human
design should happen to be particularly useful in artificial
evolution. Indeed it could be seen as a testament to the
power of evolution that using them, artificial evolution
could produce anything useful at all. If oneis going to build
practical systems using artificial evolution it appears that
one has to go back to basics and try to design radically new
forms of electronic components or circuits [e.g. 14] that
might assist the artificial evolutionary process. This could
be done in two ways. First, one could search for specia
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materials and then subject them to intrinsic artificial
evolution, and second, one could try to define new kinds of
components in simulation and subject them to extrinsic
evolution. The former is obviously a good approach,
however it is potentially very expensive and likely to be
very difficult. The latter though, perhaps, is not as exciting,
however it is feasible and could actually assist the former
goa by helping us to identify what kinds of properties are
important. These thoughts were the starting point for the
work reported in this paper.

The paper is divided as follows: Section 2 is concerned
with the definition of the new component model (which is
described as messy). Section 3 describes the genotype
representation and evolutionary algorithm that was used.
Section 4 describes the experiments performed. In section 5
the experimental results are presented. In section 6 the
concluding remarks are made. The paper finishes with a
discription of possible future work in section 7.

2 Messy gates

Since the aim is not only to create new types of components
for use in artificial evolution but also to understand exactly
how they work, it was necessary to choose a new model that
was adjustable. It was desirable to be able to change a
parameter continuously so that the new component model
could become the same as a familiar traditional component.
A natural choice of traditional component was a digital
logic gate. Accordingly, a model that was that of a digital
multiplexer with additional randomness on the output was
created. The new model took real valued input combined
the inputs to give a real valued output and random noise
was then superimposed on the output. These gates are being
referred to as messy and as having a degree of messiness.
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Figure 1. Model of messy MUX

The equation below describes the messy MUX:
y=mr+ac +hbc (D

where m represents the constant value of messiness chosen
for the entire circuit and r represents a real random number
uniformly sampled from the interval [-1.0, 1.0]. The inputs
to the messy MUX are a and b, and c is the control input.
The bar over c refers to 1-c. All variables are real-valued.

Clearly when m=0 and a, b, and ¢ are only alowed to be 0
or 1, the digital MUX is recovered. In the experiments a
messy MUX with one input inverted (input b would then
become 1-b) was used as well.

3 Evolutionary algorithm and genotype

The genotype representation is the same as that used for
evolving digital designs [3,4]. It is best explained with a
small example. In figure 2 are shown four messy MUX
(mMMUX) gates. The numbers (0 -3) refer to the four
primary inputs of the target function. The numbers on the
inputs to the mMUX refer to the connections to the primary
inputs or the outputs of other mMMUX. The outputs of the
mMUX are labelled (sequentially following on from the
inputs). Thus the second mMUX on the left has the "a'
input connected to the output of the firss mMMUX, the other
two mMUX inputs are connected to the two primary inputs
3 and 0. In this example it is assumed that the target
function has four outputs. Thus the genotype has four output
connections (4 5 7 3). The numbers in bold refer to which
of the two mMUX were being used (0 refersto mMUX with
no inputs inverted, 1 refersto the "b" input being inverted ).
The numbers printed in grey refer to inactive genes or
mMUX (i.e the third mMUX does not have its output
connected). This paper only considers feed-forward circuits.
The representation allows any mMUX to have its input
connected to any other mMMUX on its left.
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Figure 2: Example genotype and resulting circuit

The evolutionary algorithm employed was a simple form of
(1+4) evolutionary strategy (ES). In this case a population
of five chromosomes is randomly generated and the fittest
chromosome selected. The new population is then filled
with mutated versions of this. Random mutation is defined
as a percentage of genes in the population that were
mutated. The mutation operator respects the feed-forward
nature of the circuits and also the different aphabets
associated with connections and functions.

Each circuit has a fixed value of messiness m. However
each gate has its own random value r (equation 1). Thisis
illustrated in
Figure 3.



Figure 3: Circuit schematic with individual random
values

The fitness of an individual is measured by testing the
chromosome with al possible combinations of inputs and
comparing the output values with the target Boolean truth
table. For al experiments described in this paper, the target
is a 2-bit multiplier. Thus, there are 4 inputs, 4 outputs and
2* possible input test vectors yielding a total of 64 output
bitsin the truth table.

Fitness is equal to the number of output bits of a circuit
being equal to the corresponding bit in the target truth table.
Thisisreffered to as bitwise correctness.

A perfectly functional circuit would have all its output
bits equal to the output bits of the truth table, and thus the
bitwise correctness would equal 64 in the case of the 2-bit
multiplier.

In the case of messy circuits, the real valued output
signals of the circuit were rounded when being compared to
the target truth table.

4 Experiments

Several experiments were performed to investigate the
nature of the mMMUX and its influence on the evolved
circuits and the evolutionary algorithm. These experiments
are described below.
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Figure 4: Experimental setup

The setup for the experiments is shown in Figure 4. The
evolutionary agorithm produces a circuit consisting of a
chromosome, a set of random values R, and the messiness
used (ms=my). A test bench alows measuring the
performance of a circuit by using different vaues of

messiness (M), different sets of random values (R;) and
introducing stuck-at faults.

The first two experiments investigated whether it was
feasible to evolve circuits that exhibited a natural robustness
to internal random noise within some specified range.

A set of about 500 chromosomes was evolved for each
of six different values of m. The fitness measure was based
on taking an average of the bitwise correctness over 15 sets
of random values r (for each gate). Evolution was halted
each time the fitness was equal to 64 (al 15 chromsomes
had bitwise correctness equal to 64). This set of
chromosomes was used to generate the results of the first
three experiments. Thus, these experiments investigates
different configurations of the testbench, with the fitness of
each circuit measured as an average over 50 trials. Thiswas
done both to introduce new random values R; for every test
performed, as well as testing different randomly chosen
gatesfor stuck-at faults.

4.1 First experiment

The first experiment sought to investigate how
computationally demanding it is to evolve circuits with high
values of m, as well as the general performance of the
circuits in an environment equally noisy to the one in which
it was evolved (m=m.). The experiment was otherwise
carried out as explained earlier.

4.2 Second experiment

Thompson has demonstrated that it is possible to evolve
robust circuits intrinsically by exposing them to various
environments [8, 9]. In the second experiment, the same set
of chromosomes were tested with the messiness of the test
bench m,, being set to increasingly higher values. This
simulates the circuits running in increasingly more noisy
environments, and disregards whatever value m, used when
the chromosomes were evolved. This was done to
investigate the robustness of the chromosomes with regards
to the amplification m, of the internal noise, and its relation
to the value of m, used in the evolution of the different
chromosomes.

4.3 Third experiment

An interesting property of a digital circuit is its fault
tolerance. An experiment was carried out to measure the
tolerance in the evolved circuits towards stuck-at faults.

The test bench was set up to subject the circuits to stuck-
at-1 faults, by fixing a gate output to 1. Stuck-at-1 faults
were selected since their impact on a multiplier is on
average more severe then stuck-at-zero faults. Thisisdueto
the fact that the output part of the 2-bit multiplier truth table
contains 14 zeros and 50 ones. Thus, increasing numbers of
stuck-at-0 faults force the bitwise correctness towards 50,



while increasing numbers of stuck-at-1 faults force the
bitwise correctness towards 14.

4.4 Fourth experiment

The last experiment sought to investigate how evolution
would be capable of exploiting individual characteristics of
given gates. This was done by generating random val ues for
R, for each gate only once for each run of the evolutionary
algorithm. The algorithm would then try to utilize the
properties of each individual mMUX in the circuit to solve
the problem.

The set of random values was saved with each
chromosome as R., and the test bench was configured to use
the saved random values as the values to be used under test
(R=RY).

The fitness function was modified by adding the number
of redundant nodes to the bitwise correctness (provided the
bitwise correctness equalled 64). This was done to
investigate if it would be possible to evolve smaller circuits
for higher values of m.

5 Resaults

This section presents the results obtained through the
experiments carried out in section 4. The results are briefly
discussed within the limits of the scope of this paper.

5.1 First experiment

Evolving chromosomes with bitwise correctness equal to 64
was more computationally expensive for large values of m.
Purely digital circuits (m=0) took an average of 2000
generations to evolve. On the other hand, it required an
average of more than 30000 generations to evolve circuits
with a messiness value of m=0.25.

The seemingly exponential growth of computational
labour isillustrated by the graph in Figure 5.
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Figure 5: Growth of required evolutionary effort

Even though all chromosomes are evaluated 15 times to
distribute the random values creating noise at the gate
outputs, the same chromosome may not obtain perfect
fitness if a new set of random values are introduced. In such
a way, the number of evaluations during evolution can be
considered a choice between computational effort and
robustness of the evolved circuit (with regards to random
values introduced).
The resulting average fitnessis shown in Figure 6.
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Figure 6: Average fithess measured through tests

Even though this figure shows a negative trend, it implies
that messy circuits are pretty robust to variations in the
internal noise within the range m, used when the particular
circuit was evolved, as the drop in fitness was quite small.

Finaly, this experiment revealed another property of
evolving messy circuits. Figure 7 illustrates how
chromosomes evolved with high values of m tend to
produce smaller circuits then those produced when
messiness is low. This is probably due to the fact that
evolution finds a way to reduce the amount of noise the
circuit is exposed to. Each new gate means a new noisy
value to cope with.
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Figure 7: The number of gates tend to be small for
larger values of m.

5.2 Second experiment

When the evolved circuits were tested in increasingly more
noisy environments, a clear trend showed increased
robustness for circuits evolved with higher messiness (m).
This trend is shown in Figure 8. The graph shows the
deviation of the fitness to the average fitness over all
evolved circuits, when exposed to increasing noise in the
environment.
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Figure 8: Average fitness when exposed to more
noisy environments.

5.3 Third experiment

It was difficult to see any clear trend on whether messy
circuits were more tolerant then pure digital ones when they
used a small number of gates. It was desirable to investigate
whether larger circuits with high messiness would be more
fault tolerant. To reliably obtain large circuits (using the

maximum number of gates =30) a term had to be added to
the fitness that favoured larger circuits. This meant that
circuits without a bitwise correctness of 64 had to be
accepted. However it was observed that these circuits
proved to be largely more fault tolerant to the stuck-at-1
faults and showed a more graceful degradation when
compared to the zero messiness case. Thistrend is shown in
the graph in Figure 9. Note that the test bench in this case
introduced the faults in the same environment that each
chromosome was originally evolved (same value of m). So
the circuits had to cope with intrinsic randomness
associated with the messiness m,, in addition to the
introduced faults.

65 - —&—pure digital (m=0)
=—#—messy circuit (m=0.25)
I e U
3
=)
L 45
35

#faults (SAL)
Figure 9: Difference in degradation

An interesting aspect of this graceful degradation is the fact
that this tolerance is implicit, since these circuits were
never evolved explicitly with fault tolerance to stuck-at
faults as a part of the EA. A comparison of the fault
tolerance of the evolved digita case (m=0) and
conventional circuits was not carried out. Certain
evolutionary systems may create circuits with some natural
mutation tolerance [10], but thisis probably not the casein
this system dueto its steep hill climbing nature.

5.4 Fourth experiment

The fourth experiment revealed that evolving circuits with
permanent sets of values R, for each chromosome, was
slightly more computationally demanding for higher values
of m. This property is plotted in Figure 10.
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Figure 10: Higher values of m required a slightly
larger amount of computational effort to evolve.

Figure 11 shows the percentage of evolved circuits having a
particular number of gates for various messiness values.
The low values of m tended to yield circuits with 7 gates,
higher values of m had a wider distribution of evolved
circuits.
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Figure 11: Distribution of solutions with regards to
the number of gates in the evolved circuits

Figure 12 shows that for values of m greater then 0.2,
certain circuits were found that used only 6 gates. This is
interesting, since it appears the minimum number of gates
(of the two types of multiplexers used) that can be used to
solve the problem in a pure digital manner is 7 [4]. An
example of a circuit of this type is shown in Figure 13. A
and B are the two 2-bit numbers being multiplied. A circle
a an input illustrates an inverted value. The shown circuit
was evolved with m equal to 0.4. 1t demonstrates the ability
of a blind evolutionary process to exploit al the "physical
characteristics’ of the components. This is reminiscent of
Thompson's findings in [7] where he found that robust

evolved clocked digital circuits exploited glitches, even
though these are shunned in conventional human design.
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Figure 12: Graph of percentage of evolved circuits
with only 6 gates

6 Conclusions

In this paper a new model of a gate-like component with
added random noise was proposed. The experiments carried
indicated that such components are beneficial in severd
ways. Firstly the new gate-like models naturally offered a
robustness to noise. Secondly circuits that were evolved
using these messy components exhibited implicit fault
tolerance to stuck-at-faults. Finaly experiments indicated
that in creating a simulateable world, "physical"
characteristics (intrinsic random values) could be exploited
to create surprisingly efficient designs (the sx mMUX 2-bit
multiplier). One advantage of such a simulation isthat it is
possible to inspect every detail of the "physics'. In addition
al the designs are replicable and the functionality of the
evolved circuit can be verified mathematically. This is
much harder to do when evolving circuitsintrinsically.

It is not easy to imagine a human design processes that
could exploit such random differences. Artificia evolution
however is quite adept at exploiting such things.

7 Futurework

This paper is a preliminary study into an area that to the
knowledge of the authors is relatively unexplored. The
model of messiness discussed here is redly just a starting
point. It is likely that more complex models of components
would be much more suitable for use in an evolutionary
design process.

Further work needs to be done to explore how the
implicit fault tolerance of messy circuits relates to circuits
whose fitness explicitly takes into account their fault
tolerance.
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Figure 13: Example of small evolved circuit (m=0.4)

An aspect for future work is aso the investigation of
which new models of components are best suited for digital
problems and which for analogue.

Finally, an interesting study could be done into the
nature of the circuits produced that were smaller then those
possible to design with pure digital MUX. There seems to
be a relation between the set of random values given to a
circuit and how small evolution manages to make the
resulting circuit. Searching for general principles within the
values of these random numbers as well as the nature of
how evolution exploits them could revea very interesting
results.
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