
The Genetic Algorithm as a Discovery Engine: Strange
Circuits and New Principles

Julian F. Mill er1, Tatiana Kalganova2, Natalia Lipnitskaya3, Dominic Job4

1,2,4 School of Computing, Napier University, 219 Colinton Road, Edinburgh, UK, EH14 1DJ
3 Dept. of Computing, State University of Informatics and Radioelectronics,

 6 P.Brovky, Minsk, Belarus, 220 600
(1j.miller, 2t.kalganova , 4d.job)@dcs.napier.ac.uk; 3nat.lip@usa.com

Abstract

This paper examines the idea of a genetic or evolutionary algorithm being an inspirational or discovery engine. This is ill ustrated in the
particular context of designing electronic circuits. We argue that by connecting pieces of logic together and testing them to see if they
carry out the desired function it may be possible to discover new principles of design, and new algebraic techniques. This is ill ustrated in
the design of binary circuits, particularly arithmetic functions, where we demonstrate that by evolving a hierarchical series of examples, it
becomes possible to re-discover the well known ripple-carry principle for building adder circuits of any size. We also examine the much
harder case of multiplication. We show also that extending the work into the field of multiple-valued logic, the genetic algorithm is able
to produce fully working circuits that lie outside conventional algebra. In addition we look at the issue of principle extraction from
evolved data.

1 Introduction

There is a great contrast between the way in which physi-
cal systems have been designed by blind evolution and
the top-down method employed by human designers. In
the former case entire systems are constructed and tested
in situ without a conscious application of principles. In
the latter systems are “evolved” by a process of human
ingenuity which employs a collection of rules, concepts
and principles. It is indeed curious that organisms such as
ourselves which are capable of imagining the world
which operates according to definite laws and abstract
design process were themselves produced by a mecha-
nism which is entirely blind and has no particular object
other than survivabilit y. We argue in this paper that al-
though it is diff icult for an evolutionary algorithm to ac-
tually suggest new principles directly, new principles may
still be inferred by studying an evolved series of exam-
ples. We also argue that by employing a blind evolution-
ary approach, dearly held assumptions and principles may
be challenged, and thus, new concepts may emerge.

A well -defined context in which to examine these is-
sues is in the field of electronic circuit design. Here hu-
man designers have abstracted the world of binary (an
alphabet of 0 and 1) and multiple valued quantities (an
alphabet of 0, 1, …, n) and specified definite operations
such as logical OR, AND, and MAX or MIN. In such a

context the objective is to construct an electronic or alge-
braic machine for carrying out a definite function (e.g.
addition, multiplication) on a number of input variables,
using either as few operations as possible, or a modular
construction which can be used to build much larger sys-
tems. The usefulness of these electronic machines is
readily apparent in modern computers. There is a par-
ticular reason why attempting to evolve arithmetic cir-
cuits might be a useful and ill uminating exercise. Such
circuits are modular in construction so that very large
systems may be constructed from the smaller building
blocks. This is clear when we recall that multiplication is
a process of repeated addition, thus we can build multi-
plication circuits by using AND gates to perform ele-
mentary one-bit multiplication and then binary full -adders
connected in an arrangement called a cellular array. This
process is a classic example of human design. Firstly we
construct building blocks which carry out functions which
we have abstracted as being fundamental. Secondly we
build larger systems by manipulating these building
blocks by a process of abstract reasoning. When we allow
biologically inspired algorithms such as evolutionary
algorithms to design the building blocks and assemble the
parts we discover an amazing number of new possibil i-
ties. This leads us to the main question studied in this
paper and it is so important that we shall refer to it as The
Fundamental Question (TFQ):

Can we by evolving a series of sub-systems of increasing
size, extract the general principle and hence discover
new principles?

Such a question immediately leads to many other funda-
mental questions: What is a sub-system or building
block? What is a principle? How can we extract a princi-
ple? To be honest there are not really very precise an-
swers to these questions even in the context of human
design. A building block is a sub-component which has
proved useful by experience. A principle is really just an
observed or deduced rule which is found to helpful in
trying to form a synthesis of a wide range of data and may
either directly or indirectly lead to a prediction which can
be tested. How are principles discovered? This is the
mysterious process of discovery which originates in the
human mind and is often called intuition or creativity. It
is our firm contention that TFQ will be answered in the
aff irmative it is just a matter of time. We hope to show in
this paper that the specialised domain of electronic logic
design is a perfect context in which to study this question.
We will give a clear example of where we have been able
to extract just such a principle (the principle of ripple-
carry), however it is one that humans have known about
for a few decades! We should clarify the concept of a
principle a littl e more. Some principles are rules-of-
thumb others have precise predictive power, often in Sci-
ence accumulation and study of the former leads inevita-
bly to the latter. Another feature of this paper is that we
show some promising results which indicate how we
might be able to extract principles from evolved circuit
data. We do this by constructing a “ fingerprint” for a
class of circuits. Essentially this consists of looking at the
relative frequencies of circuit sub-structures in entire
evolved designs. This method and some of our results are
discussed in section 5. One can think of this process as
one of data-mining (DM) evolved systems and it poten-
tially allows us to “close the loop” of principle extrac-
tion. As the extracted principles may feed back into the
evolutionary algorithm.

Figure 1: The principle extraction loop

In this paper we do not discuss the details of an evolu-
tionary algorithm, but instead refer the reader to the plen-
tiful texts which cover this field.

2 The space of all representations

Every binary and multiple-valued function is specified by
a truth table. The truth table specifies what values the
outputs of a function are for all values taken by the func-
tion inputs. There are certain special collections of op-
erators that act on a binary or multiple-valued function
that have the property that any function can be repre-
sented by expressions involving these operators and the
input variables. The collection of these operators and the
sets they operate on is often referred to as an algebra. In
the case of binary functions there are two well -known
algebras: Boolean which uses AND, OR, and NOT, and
Reed-Muller which uses AND, EX-OR and NOT. Multi-
ple-valued logic also has it’s own algebras and often they
are referred to as functionally complete bases. When
these algebras are used, a given function can only be rep-
resented by a particular class of expressions. The basic
concept is shown in Fig. 5.

Figure 5: How assemble-and-test reaches the unknown
regions of the space of all representations

The unknown region in Fig. 5 depicts all the representa-
tions of logic functions which are written as an expres-
sion which does not use operations take from the set
{ NOT, AND, OR, EX-OR} . Any expression in this re-
gion once known could be manipulated to become either
an expression in the R-M or Boolean regions. To clarify
the concept of a representation we give a simple example.
Suppose we have a truth table which we discover by as-
semble-and-test can be represented quite simply as the
output y given below:

 4xfy = (1)

where f is the output of a MUX gate with inputs x1 and x2

and control input x3 . This is represented in circuit form
below:

Figure 6: Example circuit corresponding to equation (1)

New
Principles

Evolutionary Algorithm Evolved Data

Data mining

If this function were to be represented in the Boolean
region of Fig. 5, it would have the expression given by
equation (2), where we have represented the NOT opera-
tion by an over bar, the OR operation by +, and the AND
operation is assumed between literals xi.

 y =x1x2 +x1x3 +x2 x3 + x4 (2)

Implementing this expression as an actual circuit would
require 6 logic gates (3 ANDs and 3 ORs) not including
the NOT gates required.

It would be extremely diff icult to develop an algo-
rithm which did not use the assemble-and-test concept but
would be able to synthesise circuits of the form given by
equation (1). One of the fundamental contentions of this
paper is that the assemble-and-test method is the only way
that the space of all representations can be explored.

Although we have discussed the design of logic cir-
cuits the idea expressed in Fig. 5 could be regarded as an
analogy for the design process in general. The space of
all representations would then become the space of all
designs.

3 Evolutionary Algorithms which
assemble electronic circuits from a
collection of available components

The idea of building electronic circuits by using an evo-
lutionary algorithm to connect logic gates together from a
set of possible types has only recently begun to emerge in
recent years. Using the assemble-and-test methodology to
try to get whole circuits to perform specific tasks rather
than employing complex human design principles is one
of the important themes which has arisen in the nascent
field of Evolvable Hardware (Sipper et al. 1997). Many
different approaches to this have been developed. Iba et
al (1996) showed how boolean combinational logic
functions (not involving time) could be built using a ge-
netic algorithm to evolve the connections between AND,
OR and NOT gates. Thompson (1996) showed how cir-
cuits could be synthesised on special devices called Field
Programmable Gate Arrays (FPGAs) to carry out fre-
quency discrimination tasks and robot control. The basic
technique was to evolve binary configuration sequences
to program an FPGA to carry out the desired task. There
was no human input about how this might be done, just a
measurement of the degree to which a given circuit
achieved the desired response. Remarkably it was shown
that tiny circuits could be evolved to eff iciently carry out
the task, but which operated in ways which are still not
understood, and still under intense investigation. It was

clear that the evolved circuits were making use of all
properties which were potentially useful, including the
physical properties of the sili con medium. In our own
work in this field (Mill er et al. 97, Mill er et al. 98a, 98b,
98c) we have designed a powerful technique for evolving
the choice of functions and the connections of an array of
digital logic functions. The general concept of this can be
envisaged with a simple example:

Figure 2: Gate array representation of evolved 1-bit adder

In Fig. 2 a gate array representation of an evolved one bit
adder is given. The inputs A, B, and Cin are the binary
inputs. The outputs Sum and Cout are the binary outputs.
Sum represents the sum bit of the addition of A+B+Cin,
and Cout the carry bit. The chromosome representation of
this is shown below:

0 1 0 10 0 0 2 6 3 2 1 10 0 2 3 16 6 5

The figures in bold represent the functions of the corre-
sponding logic cells. The allowed cell functions can be
chosen to be any subset of those shown in Table 1, where
ab implies a AND b, a indicates NOT a, ⊕ represents
the exclusive-OR operation and + the OR operation.

Table 1: Allowed cell functions

0 1 2 3 4 5 6 7 8 9
0 1 a b a b ab ab ab ab

10 11 12 13 14
a ⊕ b a ⊕b a + b a +b a + b

15 16 17 18 19
a +b ac + bc ac +bc ac + bc ac + bc

Functions 0-15 are the basic binary functions of 0, 1 and
two inputs. Functions 16-19 are all binary multiplexers
with various inputs inverted. The multiplexer (MUX)
implements a simple IF-THEN statement (i.e. IF c=0
THEN a ELSE b).

An evolutionary algorithm is used to evolve circuits by
beginning with a population of randomly initiated chro-
mosomes. In some cases this was a Genetic Algorithm
(GA) with uniform crossover (50% genetic exchange).
The chromosomes are constrained so that columns of
cells can only connect to cells to their left. This is neces-

Figure 1: Gate array representation of a one-bit adder

sary to ensure that the resulting circuits are not time de-
pendent (feed-forward, combinational). Sometimes the
evolutionary algorithm employed was a simple form of
(1+ λ) evolutionary strategy (ES). In this case a popula-
tion of (1+ λ) random chromosomes were randomly
generated and the fittest chromosome selected. The new
population is then fill ed with mutated versions of this.
Random mutation was defined as a percentage of genes
in the population which were mutated. The mutation op-
erator respected the feed-forward nature of the circuits
and also the different alphabets associated with connec-
tions and functions.

3.1 Binary circuit symbols

 OR AND EX-OR MUX

Figure 3: Binary circuit symbols

Note that on some diagrams a small circle may be seen
on an input or output wire, this indicates that the input or
output is inverted (by applying a NOT operation). This
notation is also used in the multiple-valued case.

3.2 Multiple-valued circuits

The methods used in the section above have also been
extended to multiple-valued circuits. Multiple-valued
logic is an extension of the more famili ar Boolean logic
to an alphabet of positive integers 0, 1, …, n, where n is
referred to as the radix. In this logic the famili ar opera-
tors such as logical a AND b, a OR b, are replaced by the
minimum of { a, b} and maximum respectively. Many
other operators can be defined which have no counterpart
in binary. The details of this approach have been reported
in (Kalganova et al. 98a, 98b). The following logic gates
have been used in circuit evolution: NOT, MIN, MAX,
MODSUM, TSUM, TPRODUCT, and any of these with
the output inverted (excluding NOT).

In Fig. 4 various diagrammatic representations of
multi -valued functions are given together with their sym-
bolic expressions. Implementations of these gates can be
found in (Jain et al. 93). We also use the 3-valued T-gate
as one of the basic component for the design (Kameyama
et al. 86). The T-gate is the multiple-valued counterpart
of the binary multiplexer.

Figure 4: Symbols and analytic representation of two-
input multiple-valued logic gates

4 Results

4.1 One-bit adder

The conventional one-bit adder is depicted below

Figure 7: Block diagram of one-bit adder with carry and
conventional circuit diagram

The conventional (most eff icient) circuit diagram shown
in Fig. 7 requires 5 logic gates of three types (AND, OR,
EX-OR). Note that the sum output is implemented with
EX-OR gates. This is a characteristic of the human de-
sign.

When an evolutionary algorithm is used some strange
but quite elegant solutions are possible. Fig. 8 depicts an
eff icient 1-bit adder which was obtained. In reality MUX
gates can be are built out of smaller components, 2
ANDs and 1 OR. However some modern devices use the
MUX gate as an ‘atomic’ device in that all other gates
are synthesised using this. The MUX gate is unusual in
this respect in that by merely setting one of the three in-
puts to 0 or 1 it can realise any binary function of two
variables (actually there are precisely six functions which
have this special property, often they are called universal
logic modules or ULMs).

 ADD1Cin

 B

 A

Sum

Cout

Figure 8: Evolved 1-bit adder with carry (A)

An interesting feature of this circuit is that the sum and
carry parts of the circuit are completely de-coupled and
there is a nice symmetry to it, which suggests that just as
EX-OR gates naturally carry out elementary addition, so
the MUX gate naturally synthesises the carry process of
addition. This might be thought of as potential new prin-
ciple which has not been observed by human designers.
It should be noted that the circuit was actually evolved
by separating the carry function from the sum and
evolving them separately. When both are evolved to-
gether under a more constrained geometry (2 x 2 cells) it
becomes more diff icult for the EA to correctly synthesise
the circuit and it requires about 20 runs of 2000 genera-
tions (population size 50, 100% breeding, 5% mutation)
to produce a solution. This is shown in Fig. 9.

Figure 9: Evolved 1-bit adder with carry (B)

This is a remarkably eff icient circuit (it’ s genome was
explained in section 3). Actually this circuit is known but
was only recently discovered1.

4.2 Two-bit adder

One of the principles used by human to construct larger
adders is known as the ripple-carry principle. The block
diagram for a two bit adder this is shown below:

Figure 10: The two-bit ripple-carry adder
Each of the blocks in Fig. 10 are identical to that depicted
in Fig. 7. The two-bit adder can perform the calculation

1 Personal communication by John Gray, formerly of
Xili nx, Edinburgh.

a+b where a and b are any positive integers between 0
and 3. We were able to evolve the two-bit adder without
the insertion of any hints about how to do it. In the first
design shown in Fig. 11 we again separated the sum part
of the circuit from the carry part.

Figure 11: Evolved two-bit adder design (A)

We did this so that we could see if the new evolved cir-
cuit has anything in common with the evolved one-bit
adder (Fig. 8). It is clear that they as the carry circuit of
the one-bit adder is actually used as an important part of
the carry circuit for the two-bit adder. There is a lot of
subtlety to this! As before with the one-bit adder we sub-
sequently evolved the complete adder without the carry
being separated. Again the task was more diff icult. A 3 x
3 geometry was chosen and the genetic algorithm had the
following parameters:- population size 50, 50,000 gen-
erations, 20 runs, breeding 100%, mutation 5%, eliti sm,
levels-back = 2. In the 20 runs 5 solutions were obtained
which 100% functional. The number of required cells
were 6 (1), 7 (1), 8 (3). The best circuit is shown below:

Figure 12: Evolved two-bit adder (B)

Comparing this circuit with the best evolved one-bit ad-
der circuit (Fig. 9) it can be seen that the two bit adder
circuit is produced by connecting the two smaller adders
in a configuration identical to that shown in Fig. 10.
Clearly we can then deduce the modular design principle
of the ripple-carry adder and hence build adder circuits of
any size. This demonstrates that principles can be ex-
tracted from a series of evolved examples. However in
this case human designers already know the principle!

 Sum circuit Carry circuit

4.2 Two-bit multiplier

The process of designing a circuit to perform multiplica-
tion is modelled on the famili ar long multiplication proc-
ess shown below:

Figure 13: Multiplication of two-bit binary numbers

The multiplication of two one-bit binary numbers is ac-
complished with and AND gate. Thus to build a circuit to
multiply two integers a, b (between 0 and 3) one requires
the circuit shown in Fig. 14.

Figure 14: Two-bit cellular multiplier

A gate-level picture of this given in Fig. 15. The cross on
the topmost AND gate indicates that in practise this gate
is not required as the most significant bit of the output
product (P4) can be obtained without it.

Figure 15: Gate diagram for most eff icient two-bit multi-
plier

To obtain a plentiful supply of fully functional evolved
two-bit multiplier circuits a (1+3)-ES algorithm was used
with uniform mutation. The mutation probabilit y was
0.02. One thousand runs of 50,000 generations were car-
ried out with a 3 x 4 geometry and allowed gates types 6-
16 (see Table 1). The levels-back parameter was set to 4.

Of the 1000 runs 992 circuits were produced which were
100% correct. Of these 139 required only 7 gates so were
as eff icient as the conventional circuit shown in Fig. 15.
Three of the evolved circuits are shown below:

Figure 16: An evolved two-bit multiplier (A)

Figure 17: An evolved two-bit multiplier (B)

Figure 18: An evolved two-bit multiplier (C)

Examining these circuits instantly reveals their strange-
ness. In circuit A there are two independent sub-circuits,
one involves P1 and P3 and the other, P2 and P4. This is
very counter intuitive as in the conventional model of
multiplication (Fig. 15) none of the outputs are re-used
(except possibly P4 which turns out to be an input to the
EXOR gate with P3 as the output). P3 is produced by
three gates in circuit A, whereas it needs four in the con-
ventional circuit. The circuit for P2 in all three evolved
circuits is effectively the same. In the conventional cir-
cuit P1 has nothing to with P3, yet in two of these cir-
cuits (A and C) P1 is used to produce P3. Despite the fact
that one can apply the symbolic rules of Boolean algebra
to show that all these circuits are transformations of one
another (including the conventional) the calculations are

 A2 A1
 B2 B1

 A2B1 A1B1
 A2B2 A1B2

 P4 P3 P2 P1

not obvious at all . Another strange feature of the circuits
particularly circuit A is that only one EX-OR gate is re-
quired yet there are two additions. It would appear that
our human concept of addition as only being modelled
by the EX-OR operation is not correct.

Since our desire here is to answer TFQ in the af-
firmative we looked at the problem of evolving the three-
bit multiplier. Could we discern any principles at work in
the evolved two-bit multipliers, which also operated in
the evolved three-bit multipliers which would enable us
to build eff icient multipliers of any size?

4.2 Three-bit multiplier

When the conventional 3-bit cellular multiplier is repre-
sented at gate-level and all redundant gates are removed
the circuit shown below is obtained:

Figure 19: Most eff icient conventional gate-level three-bit
multiplier (30 2-input gates, 26 with MUXs)

The circuit shown in Fig. 19 can calculate the product of
two integers a and b in the range 0-7. In our experiments
we chose to use just the gates ab, ab, and â b (see Table
1) because we felt that the evolved two-bit multiplier
shown in Fig. 16 was quite elegant and involved only
three gates and also because of the ‘f ingerprinting’ meth-
ods explained in section 5. We felt that if we examined
evolved three-bit multipliers with just these gates we
might stand a better chance of deducing some general
principles. To obtain a reasonable probabilit y of obtain-
ing 100% correct solutions it was found that one had to
evolve for of the order of 3,000,000 generations. We used
a geometry of 6 rows and 7 columns with the maximum
possible levels-back (7). The mutation probabilit y was
chosen to be 0.02.

We ran the ES 550 times and obtained 178 100%
functional circuits. Table 2 shows the number of circuits,
which required 30 gates or less. There were 58 circuits of
this type. The most eff icient conventional circuit shown
in Fig. 19 requires 30 two-input gates. Thus these 58 cir-
cuits are all either equally or more eff icient and 29 of

these are more eff icient. Note that in this experiment we
did not use multiplexers. It is therefore possible that we
could obtain even more eff icient circuits.

Table 2. Experimental results for three-bit multiplier

gates used# runs
total

100%
cases 30 29 28 27

550 178 29 17 11 1

Figure 20: Evolved three-bit multiplier (most eff icient –
26 gates)

The most eff icient evolved three-bit multiplier shown in
Fig. 20 requires only 26 gates rather than 27. This is be-
cause when we examined the evolved circuit we discov-
ered that one of the gates used was logically redundant
and could be removed. When we compare the evolved
three-bit multiplier with the conventional we notice that
there are considerable differences and it is not possible
looking at the evolved circuit to see whether there are
repeating modules. However we can see that outputs P1

and P2 are implemented in the same way in both circuits.
In the evolved circuit P1 is used twice whereas in the
conventional circuit it is never used again. P2 is not re-
used in either circuit. P3 requires 7 gates in the evolved
circuit in comparison with 9 gates for conventional cir-
cuit. One of the interesting features of this design is that
in the evolved circuit P3 depends on P1. This does not
happen in the conventional circuit. The same is true of
output P4, it too depends on P1 in the evolved circuit.

The differences between two circuits were very
marked when we looked how the outputs Pk depended on
the elementary products (AiBj). Firstly we noticed that in
conventional design A1B1 is not used by any other out-
puts. However in the evolved circuit this elementary
product is used in the implementation of P3 and P4. The
elementary products (A2B1) and (A1B2) which are used in
the implementation of P2 are not involved in any other
outputs in the evolved circuit. However in conventional

implementation these products are used for every output
except P1.

It is clear that the way the multiplication process is
modeled in the evolved circuit is very different from the
human one.

4.3 Multiple-valued one-digit adder with
carry

Multiple-valued logic contains a lot of different algebras,
which we can use to represent a given multiple-valued
logic function. Each of these logic algebras contains a
specific set of multiple-valued logic operators and is
called in the literature a functionally complete basis. This
means that it can implement any multiple-valued logic
function of n variables. As we saw in section 2 there is a
space of expressions, which represents a given function.
This function can be represented by any of the functional
complete bases. There are well -known human developed
tools to map this function using the specific functional
complete basis into a given expression. However we en-
counter problems when we want to combine some of
these functional complete bases to represent a function in
an economical way. Traditionally this would mean that
we would have to develop a specific logic algebra, this
takes a lot of time and effort and there is no guarantee of
success at the end of the process. In addition it is only
after this procedure that we are able to map the logic
function into a given basis. This is one of the disadvan-
tages of the human design procedure. In order to over-
come this diff iculty we, as in the binary case, adopted the
method of assemble and test. This allows us to use any of
the logic sets and in principle obtain any possible logic
expression. Note that the set used should contain one of
the functional complete basis known in order to guarantee
success. Thus we potentially can discover new and highly
eff icient alternative representations which are counter to
human intuition.

Here we will l ook at the some evolved designs for
one-digit 3-valued adder with output carry. Three-valued
logic functions can take the values in the set { 0, 1, 2} .
Thus, for example, in terms of base 3 arithmetic 1+2=10,
that is to say, the sum is 3 carry 0. In Figs. 21-22 we give
some examples of evolved circuits in the non-standard set
of multiple-valued gates. Note that within any of the sets
discussed we always used a functional complete basis as a
subset of the gates chosen.

Fig. 21 shows some evolved designs for the one-digit
3-valued adder with carry. All these circuits have the
same structure. The difference between them lies with
gates 3 and 4. Analysis of the resulting logical expres-
sions gives rise to equations which are extremely diff icult
to prove in a purely algebraic manner.

� �� �
� �� �

Carry

Sum

1 2

3

4

� � � � � � �

Carry
� �� �
� �� �

Sum

1 2

3

4

� � � � � 	 �

� �� �
� �� �

Carry

Sum

1 2

3

4

� � � � �
 �

� �
�
 Carry

Sum

1 2

3

4� �
�

Carry
� �
�

� �
�

Sum

1 2

3

4

� � � � � � � � � � � � � �

Figure 21: Evolved one-bit adder circuits which are iden-
tical except for gates 3 and 4.

However because the assemble-and-test method doesn’ t
explicitly carry out formal algebraic operations we find
such unusual structures relatively easily.

Figure 22: Evolved one-bit adder with T-gate

The circuit shown above involves four different types of
gates. We were unable to find any multiple-valued logic
design methods, which allowed us to represent the func-
tion in this way. The algebra of multiple-valued logic is
still i ncomplete however using the assemble-and-test
method allows us to escape from the restrictions inherent
in a particular algebra.

5 Fingerprinting and Principle Ex-
traction

There are many types of principles which potentially
might be extracted from a database of genotypes of
evolved circuits. In Fig. 1 we saw that after the stage of
collecting evolved data one was faced with a problem of
data mining. The extraction of knowledge from a large
collection of evolved data is a littl e like trying to identify
which genes (in terms of base sequences of DNA) are
responsible for particular inherited characteristics. It is
not an easy task. One approach to this is to try to catego-
rise the various types of sub-circuit which are present in
the evolved genotypes. Since there are many sub-circuits
which are permutations of one another one must find a
way of normalising the data so that the permutations are
readily identifiable. Additionally one must look for sub-

circuits of a particular form and size. This is necessary to
avoid the combinatorial explosion which would occur if
one wished to enumerate all possible sub-circuits. As a
first attempt in this direction we decided to analyse the
evolved genotypes (after permutational normalisation) in
terms of 2-into-1 sub-circuits. The concept of a 2-into-1
sub-circuit is shown in Fig. X.

Figure 23: The 2-into-1 sub-circuit principle

In the diagram each cell may be any logic gate including
a multiplexer. Each multiplexer would therefore have six
2-into-1 sub-circuits associated with it (as it has three
inputs. Also if cell 3 was a ab gate (type 7) there would
be two different sub-circuits of form XY7 and YX7 for
each pair of X Y values (X,Y are allowed gate types in
the genotypes). To avoid this explosion of possible sub-
circuits we ignored which particular inputs of cell 3, cells
1 and 2 were connected to. We then indexed all possible
XYZ triples and collated the frequencies of occurrence of
these in the evolved material. We analysed the evolved
genotypes associated with the 100% solutions for the
two-bit multiplier. There were 61 distinct 2-into-1 prin-
ciples which occurred more than ten times. Fig. 24 shows
a histogram of these.

Figure 24: Distribution of 2-into-1 principles occurring in
evolved two-bit multiplier genotypes (with frequency
greater than 10)

The seven highest peaks correspond to the sub-circuits
shown in Table 2. The 6-6-10 sub-circuit corresponds to
two ANDs into EX-OR. In human design terms one
would see this as adding two multiplications so we would
not be very surprised to see this being an important prin-
ciple in the multiplication process. The 6-6-6 sub-circuit
could be seen as connected with the ‘carrying forward’
operation. The third most frequently occuring is 6-15-7.

Table 2: Seven most frequently occurring sub-circuits

Cell 1 Cell 2 Cell 3 Frequency
6 6 10 215
6 6 6 151
6 15 7 107
6 6 7 94
6 6 8 94
15 6 8 80

Actually gate 15 is logically identical to a NAND gate,
thus 6-15-7 is a close relative of 6-6-7. Also 6-6-8 is also
a close relative as gate 8 is the same as gate 7 with the
inputs reversed. Clearly the 6-6-7 sub-circuit is very im-
portant. Yet this structure is not involved in the conven-
tional multiplier at all (Fig. 15). It can be seen in the
evolved example shown in Fig. 16. One can think of the
histogram shown in Fig. 24 as being a circuit ‘f inger-
print’ . Admittedly it is just one of a number of possible
sub-circuit histogram plots but it is probably one of the
most fundamental. Inspired by the obvious usefulness of
gates 6, 7, and 10 (AND, AND with inverted input, and
EX-OR) we evolved many 100% solutions for the three-
bit multiplier where we had allowed only these three gate
types. The evolved three-bit multiplier shown in Fig. 20
is an example of this. It is clear one should distinguish
between inputs to obtain a better picture. This was car-
ried out for the analysis of three-bit multiplier solutions
which were 100% correct using gates 6, 7, and 10 only.
The fingerprint is shown below:

Figure 25: Distribution of 2-into-1 principles occurring in
evolved three-bit multiplier genotypes

The highest peak corresponds to 6-6-10 with 80 occur-
rences. The next highest peak corresponds to 6-6-7 with
30 occurrences.

There is still much further work to be done here. A
better way of trying to characterise 2-into-1 principles
would be to look at logical behaviours as this would re-
move the occurrence of sub-circuits which have different
gene triples but the same behaviour. Also one needs to
take into account that useful modular sub-blocks may not
fit neatly into the 2-into-1 category. This can be ill us-

Cell
1

Cell
2

Cell 3

trated by the known usefulness of the half-adder in addi-
tion and multiplier circuits. The half-adder is shown be-
low:

Figure 26: The half-adder sub-circuit

6 Conclusions

In this paper we have put forward the view that evolu-
tionary algorithms together with the assemble-and-test
methodology can be regarded as a discovery engine or
creative machine for new designs. We studied this idea in
the context of digital logic. We suggested that new prin-
ciples may be able to be discovered by examining a se-
ries of evolved designs, in our case, for arithmetic logic
circuits. We examined the concept of the space of all
circuit representations but feel that similar ideas may
well carry over to the general field of design. The human
designed algebras which form subsets of the space of all
representations both for binary and multiple-valued sys-
tems are analogous to small ‘pools’ of human principles
and that by employing the blind evolutionary technique
we may discover new principles. We also looked at the
diff icult problem of principle extraction from evolved
data. We feel confident that the process of learning new
principles from a blind evolutionary process is inevitable,
it is just a matter of time.

References

H. Iba, M. Iwata, T. Higuchi, Machine Learning Ap-
proach to Gate-Level Evolvable Hardware, in Higu-
chi T. et al. (Eds.), Proceedings of The 1st Int. Conf.
on Evolvable Systems: From Biology to Hardware
(ICES96), Lecture Notes in Computer Science 1259:
pp. 327-343, Springer-Verlag, Heidelberg, 1997.

A. K. Jain, R.J. Bolton, M. H. Abd-El-Barr. CMOS Mut-
liple-Valued Logic Design - Part 2: Function Reali-
zation. IEEE Trans. on Circuits and Systems - I. Fun-
damental theory and applications. 40(8): pp. 515-522,
1993.

T. Kalganova, J. F. Mill er, T. C. Fogarty. Some Aspects
of an Evolvable Hardware Approach for Multiple-
Valued Combinational Circuit Design. Proc. of the
2nd Int. Conf. on Evolvable Systems (ICES'98).
1478: pp. 78-89 Lausanne, Switzerland, M. Sipper et
al. (Eds): Springer-Verlag, 1998a.

T. Kalganova, J. F. Mill er, N. Lipnitskaya, Multiple-
Valued Combinational Circuits Synthesized using
Evolvable Hardware Approach. Proc. of the 7th
Workshop on Post-Binary Ultra Large Scale Integra-
tion Systems (ULSI'98) in association with
ISMVL'98, Fukuoka, Japan. IEEE Press, 1998b.

M. Kameyama, T. Higuchi, Synthesis of optimal T-gate
Networks in Multiple-valued Logic. Proc. of the 16-
th Int. Symposium on Multiple-Valued Logic, pp.
128-136. IEEE Press, 1986.

J. F. Mill er, P. Thomson, Evolving Digital Electronic
Circuits for Real-Valued Function Generation using a
Genetic Algorithm. J. Koza et al., (Eds). Genetic
Programming: Proceedings of the Third Annual Con-
ference. Morgan Kaufmann. San Francisco, CA: pp.
863-868, 1998a.

J. F. Mill er, P. Thomson, “Aspects of Digital Evolution:
Evolvabilit y and Architecture”, in A. Eiben et al.
(Eds.), Proceedings of the 5th Int. Conf. on Parallel
Problem Solving from Nature (PPSNV), Lecture
Notes in Computer Science, Vol. 1498, Springer-
Verlag, Heidelberg, pp. 927-936, 1998b.

J. F. Mill er, P. Thomson, Aspects of Digital Evolution:
Geometry and Learning, in M. Sipper et al. (Eds.),
Proceedings of 2nd Int. Conf. on Evolvable Systems:
From Biology to Hardware (ICES98), Lecture Notes
in Computer Science, 1478, Springer-Verlag, Heidel-
berg, pp. 25-35, 1998c.

J. F. Mill er, P. Thomson, T. C. Fogarty, Designing Elec-
tronic Circuits Using Evolutionary Algorithms.
Arithmetic Circuits: A Case Study, in Genetic Algo-
rithms and Evolution Strategies in Engineering and
Computer Science: D. Quagliarella et al. (Eds.), pp.
105-131, Wiley, 1997.

M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A.
Perez-Uribe, A. Stauffer, “A Phylogenetic, Ontoge-
netic, and Epigenetic View of Bio-Inspired Hardware
Systems” , IEEE Trans. on Evolutionary Computation,
1(1): pp. 83-97, 1997.

A. Thompson, An evolved circuit, intrinsic in sili con,
entwined with physics, in Higuchi T. et al. (Eds.),
Proceedings of the 1st Int. Conf. on Evolvable Sys-
tems: From Biology to Hardware (ICES96), Lecture
Notes in Computer Science, 1259: pp. 390 – 405,
Springer-Verlag, Heidelberg, 1997

