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Abstract

This paper examines the ideaof a genetic or evolutionary algorithm being an inspirational or discovery engine. Thisisill ustrated in the
particular context of designing eledronic drcuits. We ague that by conneding pieces of logic together and testing them to seeif they
cary out the desired function it may be posshle to dscover new principles of design, and rew algebraic techniques. Thisisill ustrated in
the design dof binary circuits, particularly arithmetic functions, where we demonstrate that by evolving a hierarchicd series of examples, it
beames possble to re-discover the well known ripple-carry principle for building adder circuits of any size We dso examine the much
harder case of multiplicaion. We show also that extending the work into the field of multiple-valued logic, the genetic dgorithm is able
to produce fully working circuits that lie outside conventional algebra. In addition we look at the isaue of principle extradion from

evolved data.

1 Introduction

Thereisagrea contrast between the way in which physi-
cd systems have been designed by blind evolution and
the top-down method employed by human designers. In
the former case entire systems are @nstructed and tested
in situ without a mnscious application of principles. In
the latter systems are “evolved”’ by a process of human
ingenuity which employs a lledion of rules, concepts
and principles. It isindeed curious that organisms sich as
ourselves which are cgable of imagining the world
which operates acording to definite laws and abstrad
design process were themselves produced by a mecdha
nism which is entirely blind and has no particular objed
other than survivability. We ague in this paper that al-
thoughit is difficult for an evolutionary algorithm to ac-
tually suggest new principles diredly, new principles may
till be inferred by studying an evolved series of exam-
ples. We dso argue that by employing a blind evolution-
ary approach, dealy held assumptions and principles may
be dhallenged, and thus, new concepts may emerge.

A well-defined context in which to examine these is-
sues is in the field of eledronic drcuit design. Here hu-
man designers have astraded the world of binary (an
alphabet of 0 and 1) and multiple valued quantities (an
alphabet of 0, 1, ..., n) and spedfied definite operations
such as logicd OR, AND, and MAX or MIN. In such a

context the objediveis to construct an eledronic or alge-
braic madine for carying out a definite function (e.g.
additi on, multiplication) on a number of input variables,
using either as few operations as possble, or a modular
construction which can be used to build much larger sys-
tems. The usefulness of these dedronic madines is
readily apparent in modern computers. There is a par-
ticular reason why attempting to evolve aithmetic dr-
cuits might be auseful and illuminating exercise. Such
circuits are moduar in construction so that very large
systems may be onstructed from the smaller building
blocks. Thisis clear when we recdl that multiplicaion is
a process of repeaed addition, thus we can build multi-
plicdion circuits by using AND gates to perform ele-
mentary one-bit multi pli cation and then binary full -adders
conneded in an arrangement cdled a cdlular array. This
processis a dasic example of human design. Firstly we
construct buil ding blocks which carry out functions which
we have astraded as being fundamental. Secondly we
build larger systems by manipulating these building
blocks by a processof abstrad reasoning. When we dlow
biologicdly inspired agorithms sich as evolutionary
algorithms to design the building blocks and assemble the
parts we discover an amazng number of new possbili-
ties. This leals us to the main question studied in this
paper and it is  important that we shall refer to it as The
Fundamental Question (TFQ):



Canwe by ewlving aseries of sub-systems of increasing
size, extract the general principle and tence discover
new principles?

Such a question immediately leads to many other funda-
mental questions. What is a sub-system or building
block? What is a principle? How can we etrad a princi-
ple? To be honest there ae not redly very predse an-
swers to these questions even in the context of human
design. A building block is a sub-component which has
proved useful by experience A principleisredly just an
observed o deduced rule which is found to helpful in
trying to form a synthesis of awide range of data and may
either diredly or indiredly leal to a prediction which can
be tested. How are principles discovered? This is the
mysterious process of discovery which originates in the
human mind and is often cdled intuition or credivity. It
is our firm contention that TFQ will be answered in the
affirmative it isjust a matter of time. We hope to show in
this paper that the spedalised damain of eledronic logic
designis a perfed context in which to study this question.
Wewill give a ¢dea example of where we have been able
to extrad just such a principle (the principle of ripple-
cary), however it is one that humans have known about
for a few decales! We should clarify the concept of a
principle a littte more. Some principles are rules-of-
thumb athers have predse predictive power, often in Sci-
ence acamulation and study of the former leals inevita-
bly to the latter. Another feaure of this paper is that we
show some promising results which indicae how we
might be &le to extrad principles from evolved circuit
data. We do this by constructing a “fingerprint” for a
classof circuits. Essntialy this consists of looking at the
relative frequencies of circuit sub-structures in entire
evolved designs. This method and some of our results are
discussed in sedion 5. One can think of this process as
one of data-mining (DM) evolved systems and it poten-
tidly allows us to “close the loop’ of principle extrac-
tion. As the extraded principles may feed bad into the
evolutionary algorithm.

Evolutionary Algorithm ——» Evolved Data
New
Principles
Datamining
Figure 1: The principle extradion loop
In this paper we do not discuss the details of an evolu-

tionary algorithm, but instead refer the reader to the plen-
tiful texts which cover thisfield.

2 The space of all representations

Every binary and multi ple-valued function is edfied by
a truth table. The truth table spedfies what values the
outputs of a function are for all values taken by the func-
tion inputs. There ae cetain speda colledions of op-
erators that ad on a binary or multiple-valued function
that have the property that any function can be repre-
sented by expresgons involving these operators and the
input variables. The mlledion of these operators and the
sets they operate on is often referred to as an algebra. In
the cae of binary functions there ae two well-known
algebras: Bodean which uses AND, OR, and NOT, and
Real-Muller which uses AND, EX-OR and NOT. Multi-
ple-valued logic dso hasit’s own algebras and dften they
are referred to as functiondly complete bases. When
these algebras are used, a given function can only be rep-
resented by a particular class of expressons. The basic
concept is rown in Fig. 5.
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Figure 5. How assmble-and-test readies the unkmown
regions of the spaceof al representations

The unknown region in Fig. 5 depicts all the representa-
tions of logic functions which are written as an expres-
sion which does not use operations take from the set
{NOT, AND, OR, EX-OR}. Any expresson in this re-
gion once known could be manipulated to become ather
an expresson in the R-M or Bodean regions. To clarify
the concept of a representation we give asimple example.
Suppose we have atruth table which we discover by as-
semble-and-test can be represented quite simply as the
output y given below:

y= x4 L)
where f isthe output of aMUX gate with inputs x; and X,
and control input X3 . Thisis represented in circuit form

below:
X — Xy
|

X3

Figure 6: Example drcuit corresponding to equation (1)




If this function were to be represented in the Boodlean
region of Fig. 5, it would have the expresson gven by
equation (2), where we have represented the NOT opera-
tion by an over bar, the OR operation by +, and the AND
operation is asaumed between literals x;.

V=X X t X X3 * X X3t X 2

Implementing this expresson as an adual circuit would
require 6 logic gates (3 ANDs and 3 ORs) not including
the NOT gates required.

It would be extremely difficult to develop an algo-
rithm which did not use the assemble-and-test concept but
would be ale to synthesise drcuits of the form given by
equation (1). One of the fundamental contentions of this
paper isthat the assemble-and-test method is the only way
that the spaceof all representations can be explored.

Although we have discussed the design of logic dr-
cuits the idea expressed in Fig. 5 could be regarded as an
anaogy for the design processin general. The space of
al representations would then become the space of all
designs.

3 Evolutionary Algorithmswhich
assemble electronic circuitsfrom a
collection of available components

The ideaof building eledronic drcuits by using an evo-
[utionary algorithm to conned logic gates together from a
set of posshle types has only recently begunto emergein
recent yeas. Using the aseemble-and-test methoddogy to
try to get whole drcuits to perform spedfic tasks rather
than employing complex human design principles is one
of the important themes which has arisen in the nascent
field of Evolvable Hardware (Sipper et a. 1997. Many
different approaches to this have been developed. Iba @
a (1996 showed how bodean combinational logic
functions (not involving time) could be built using a ge-
netic dgorithm to evolve the mnnedions between AND,
OR and NOT gates. Thompson (1996 showed how cir-
cuits could be synthesised on spedal devices cdled Field
Programmable Gate Arrays (FPGAS) to cary out fre-
guency discrimination tasks and robat control. The basic
technique was to evolve binary configuration sequences
to program an FPGA to cary out the desired task. There
was no human input about how this might be done, just a
measurement of the degree to which a given circuit
achieved the desired response. Remarkably it was siown
that tiny circuits could be evolved to efficiently carry out
the task, but which operated in ways which are still not
understood, and still under intense investigation. It was

clea that the evolved circuits were making wse of all
properties which were potentialy useful, including the
physicd properties of the silicon medium. In our own
work in this field (Miller et a. 97, Miller et al. 983, 98h,
98c) we have designed a powerful technique for evolving
the choice of functions and the mnnedions of an array of
digital logic functions. The general concept of this can be
envisaged with asimple example:
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Figure 2: Gate aray representation of evolved 1-bit adder

In Fig. 2 agate aray representation of an evolved one bit
adder is given. The inputs A, B, and Cin are the binary
inputs. The outputs Sum and Cout are the binary outputs.
Sum represents the sum bit of the aldition of A+B+Cin,
and Cout the cary bit. The ciromosome representation of
thisis down below:

01010 0026 32110 02316 6 5

The figures in bdd represent the functions of the orre-
spondng logic cdls. The dlowed cdl functions can be
chasen to be ay subset of those shown in Table 1, where
ab implies a AND b, "a indicates NOT a, O represents
the exclusive-OR operation and + the OR operation.

Table 1: Allowed cdl functions

0 1 2 3 4 5 6 7 8 9
0 1 a b "a b ab ab "a "ab
10 11 12 13 14
alb aldb a+b a+b Ta+b
15 16 17 18 19

“a+ b dc+bc ac+bc "ac+bc ac+ bc
Functions 0-15 are the basic binary functions of 0, 1 and
two inpus. Functions 16-19 are dl binary multiplexers
with various inpus inverted. The multiplexer (MUX)

implements a simple IF-THEN statement (i.e. IF ¢=0
THEN aELSE b).

An evolutionary algorithm is used to evolve drcuits by
beginning with a popuation o randamly initiated chro-
mosomes. In some caes this was a Genetic Algorithm
(GA) with uniform crosover (50% genetic exchange).
The dromosomes are @nstrained so that columns of
cdlscan ony conred to cdlsto their left. Thisis neces-



sary to ensure that the resulting circuits are not time de-
pendent (feed-forward, combinational). Sometimes the
evolutionary algorithm employed was a simple form of
(1+A) evolutionary strategy (ES). In this case apopua-
tion d (1+A) random chromosomes were randamly
generated and the fittest chromosome seleded. The new
popuation is then filled with mutated versions of this.
Randaom mutation was defined as a percentage of genes
in the popuation which were mutated. The mutation -
erator respeded the feal-forward nature of the drcuits
and aso the different alphabets associated with connec-
tions and functions.

3.1 Binary circuit symbols

o> D D Tt

OR AND EX-OR MUX
Figure 3: Binary circuit symbals

Note that on some diagrams a small circle may be seen
onan inpu or output wire, thisindicates that the inpu or
output is inverted (by applying a NOT operation). This
natationis also used in the multi ple-valued case.

3.2 Multiple-valued circuits

The methods used in the sedion above have dso been
extended to multiple-valued circuits. Multiple-valued
logic is an extension of the more familiar Boolean logic
to an aphabet of positive integers 0, 1, ..., n, where n is
referred to as the radix. In this logic the familiar opera-
tors such aslogicd aAND b, aOR b, are replacal by the
minimum of {a, b} and maximum respedively. Many
other operators can be defined which have no counterpart
in binary. The detail s of this approach have been reported
in (Kalganova € a. 98a, 98b). The following logic gates
have been used in circuit evolution: NOT, MIN, MAX,
MODSUM, TSUM, TPRODUCT, and any of these with
the output inverted (excluding NOT).

In Fig. 4 various diagrammatic representations of
multi -valued functions are given together with their sym-
balic expressons. Implementations of these gates can be
found in (Jain et a. 93). We dso use the 3-valued T-gate
as one of the basic component for the design (Kameyama
et a. 86). The T-gate is the multiple-valued counterpart
of the binary multiplexer.

xsz *2 ¥ xsz x,z_ Y

y=x+x y=xnrx, y=x80x y=x_pifc=i

MODSUM MIN TPRODUCT T-GATE

X x % %
Hl =i 310,
Y=X14 y=x y=xDx, YT X VX

MODPRODUCT NOT TSUM MAX

Figure 4: Symbads and analytic representation d two-
input multi ple-valued logic gates

4 Results

4.1 One-bit adder

The mnventional one-bit adder is depicted below

A — | Cout
® 7 su
— Sum
Cin — ADD1

): Sum

Figure 7: Block diagram of one-bit adder with carry and
conventional circuit diagram

The onventional (most efficient) circuit diagram shown
in Fig. 7 requires 5 logic gates of threetypes (AND, OR,
EX-OR). Note that the sum output is implemented with
EX-OR gates. This is a daraderistic of the human de-
sign.

When an evolutionary algorithm is used some strange
but quite degant solutions are possble. Fig. 8 depicts an
efficient 1-bit adder which was obtained. In redity MUX
gates can be ae built out of smaller comporents, 2
ANDs and 1 OR. However some modern devices use the
MUX gate a an ‘atomic’ device in that all other gates
are synthesised using this. The MUX gate is unusua in
this resped in that by merely setting ore of the threein-
putsto 0 a 1 it can redise any hinary function o two
variables (adually there ae predsely six functions which
have this gpeda property, often they are cdled uriversal
logic modues or ULMSs).



Figure 8: Evolved 1-bit adder with carry (A)

An interesting feaure of this circuit is that the sum and
cary parts of the drcuit are wmpletely de-couped and
there is a nice symmetry to it, which suggests that just as
EX-OR gates naturaly carry out elementary addition, so
the MUX gate naturally synthesises the cary process of
addition. This might be though of as patential new prin-
ciple which has nat been olserved by human designers.
It shoud be noted that the drcuit was adualy evolved
by separating the cary function from the sum and
evolving them separately. When bah are evolved to-
gether under a more nstrained geometry (2 x 2cdls) it
bewmes more difficult for the EA to corredly synthesise
the drcuit and it requires abou 20 runs of 2000 gnera-
tions (popdation size 50, 100% breeding, 5% mutation)
to produce asolution. Thisis siownin Fig. 9.

N
— D—
A0

E0

Figure 9: Evolved 1-bit adder with carry (B)

This is a remarkably efficient circuit (it's genome was
explained in sedion 3. Actualy this circuit is known bu
was only recently discovered'.

4.2 Two-bhit adder

One of the principles used by human to construct larger
adders is known as the ripple-carry principle. The block
diagram for atwo hit adder thisis srown below:

20— cout A1 — | Ceut

BO— A0 —

0 —1Cm —‘ Cin —‘
=0 =1

Figure 10: The two-bit ripple-carry adder
Eadh of the blocksin Fig. 10 are identicd to that depicted
in Fig. 7. The two-bit adder can perform the cdculation

! Personal communicaion byJohnGray, formerly of
Xilinx, Edinburgh.

a+b where a and b are awy positive integers between 0
and 3. We were ale to evolve the two-bit adder without
the insertion of any hints about how to doit. In the first
design shown in Fig. 11 we ajain separated the sum part
of the drcuit from the cary part.

Sum circuit

Carry circuit
Figure 11: Evolved two-bit adder design (A)

We did this © that we ould seeif the new evolved cir-
cuit has anything in common with the evolved one-bit
adder (Fig. 8). It is clea that they as the cary circuit of
the one-bit adder is adually used as an important part of
the cary circuit for the two-bit adder. There is a lot of
subtlety to this! As before with the one-bit adder we sub-
sequently evolved the cmomplete alder without the cary
being separated. Again the task was more difficult. A 3 x
3 geometry was chosen and the genetic dgorithm had the
following parameters:- population size 50, 50,000 gen-
erations, 20 runs, breading 100, mutation 5%, €litism,
levels-badk = 2. In the 20 runs 5 solutions were obtained
which 100% functional. The number of required cdls
were 6 (1), 7 (1), 8 (3). The best circuit is srown below:

B1
Cont:

E__L)Di D—m

s Pay o—

Figure 12: Evolved two-bit adder (B)

Comparing this circuit with the best evolved one-bit ad-
der circuit (Fig. 9) it can be seen that the two bit adder
circuit is produced by conneding the two smaller adders
in a mnfiguration identicd to that shown in Fig. 10.
Clealy we can then deduce the modular design principle
of the ripple-carry adder and hence buil d adder circuits of
any size This demonstrates that principles can be ex-
traded from a series of evolved examples. However in
this case human designers already know the principle!



4.2 Two-bit multiplier

The processof designing a drcuit to perform multipli ca-
tion ismodelled on the famili ar long multi pli cation proc-
ess siown below:

A2 Al
B2 Bl
A2B1 A1B1
A2B2 A1B2

P4 P3 P2 P1
Figure 13: Multiplicaion d two-bit binary numbers

The multiplication o two ore-bit binary numbers is ac-
complished with and AND gate. Thusto buld a drcuit to
multi ply two integers a, b (between 0 and 3 one requires
the drcuit shown in Fig. 14.

=D 2
E1l
A2:D_ = 2
Bl i
Cout
AIZDJF Cin o
E2
3 Iz
ITL
=D
B2 0— Cin et b4

Figure 14: Two-bit cdlular multiplier

A gate-level picture of thisgivenin Fig. 15. The adosson
the topmost AND gate indicates that in pradise this gate
is nat required as the most significant bit of the output
product (P4) can be obtained without it.

P4

2

2:D 3 B3
—o N

A
B
A2
P4
Bl \D 2
:Df
A1
B2
Bl

Figure 15: Gate diagram for most efficient two-bit multi-
plier

To olktain a plentiful suppy of fully functional evolved
two-bit multiplier circuits a (1+3)-ES agorithm was used
with uriform mutation. The mutation probability was
0.02. One thousand runs of 50,000 generations were ca-
ried ou with a3 x 4 geometry and allowed gates types 6-
16 (seeTable 1). The levels-badk parameter was st to 4.

Of the 1000runs 992 circuits were produced which were
100% corred. Of these 139required ony 7 gates $ were
as efficient as the conventional circuit shown in Fig. 15.
Threeof the evolved circuits are shown below:

A2
BI P3
=

F1

Bl
A2:D P4
B1
M:D_}ﬁD =o—
k2

Figure 16: An evolved two-bit multiplier (A)
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Figure 17: An evolved two-bit multiplier (B)
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Figure 18: An evolved two-bit multiplier (C)

Examining these drcuits instantly reveds their strange-
ness In circuit A there ae two independent sub-circuits,
one involves P1 and P3 and the other, P2 and P4. Thisis
very courter intuitive & in the conventional model of
multiplication (Fig. 15) nore of the outputs are re-used
(except possbly P4 which turns out to be an inpu to the
EXOR gate with P3 as the output). P3 is produced by
threegates in circuit A, whereas it neeads four in the con-
ventional circuit. The drcuit for P2 in al three eolved
circuits is effedively the same. In the conventiona cir-
cuit P1 has nothing to with P3, yet in two of these dr-
cuits (A and C) Pl isused to produce P3. Despite the fad
that one can apply the symbalic rules of Boolean algebra
to show that all these drcuits are transformations of one
anather (including the mnventional) the cdculations are



not obvious at al. Ancther strange feaure of the drcuits
particularly circuit A is that only one EX-OR gate is re-
quired yet there ae two additions. It would appea that
our human concept of addition as only being modelled
by the EX-OR operationis not corred.

Since our desire here is to answer TFQ in the &-
firmative we looked at the problem of evolving the three
bit multi plier. Could we discern any principles at work in
the evolved two-bit multipliers, which also operated in
the evolved threebit multipliers which would enable us
to buld efficient multipliers of any size?

4.2 Three-bit multiplier

When the mnventional 3-bit cdlular multiplier is repre-
sented at gate-level and all redundant gates are removed
the drcuit shown below is obtained:

Figure 19: Most efficient conventional gate-level threehbit
multiplier (30 Zinput gates, 26 with MUXSs)

The drcuit shown in Fig. 19 can cdculate the product of
two integers a and b in the range 0-7. In our experiments
we dhose to use just the gates ab, ab, and a*b (see Table
1) because we felt that the evolved two-bit multiplier
shown in Fig. 16 was quite degant and involved only
threegates and also because of the ‘fingerprinting meth-
ods explained in sedion 5. We felt that if we examined
evolved threebit multipliers with just these gates we
might stand a better chance of deducing some genera
principles. To oltain a reasonable probability of obtain-
ing 100% corred solutions it was found that one had to
evolve for of the order of 3,000,000 generations. We used
a geometry of 6 rows and 7 columns with the maximum
posshle levels-badk (7). The mutation probability was
chosen to be 0.02.

We ran the ES 550 times and oltained 178 1006
functional circuits. Table 2 shows the number of circuits,
which required 30gates or less There were 58 circuits of
this type. The most efficient conventional circuit shown
in Fig. 19 requires 30 two-input gates. Thus these 58 cir-
cuits are dl either equally or more dficient and 29 d

these ae more dficient. Note that in this experiment we
did not use multiplexers. It is therefore possble that we
could oltain even more dficient circuits.

Table 2. Experimental results for threebit multiplier

#runs [# 1000 # gates used
total cases |30/ 29| 28 27
550 178 (29| 17| 11 1

- D P&
gg_{} DDA L—)D—’_)D Z
e

O =D =
‘Qi:DL’D =
A1:D ﬁ:)_ P1

Bl

Figure 20: Evolved threebit multiplier (most efficient —
26 gates)

The most efficient evolved threebit multiplier shown in
Fig. 20 reguires only 26 cptes rather than 27. Thisis be-
cause when we examined the evolved circuit we discov-
ered that one of the gates used was logicdly redundant
and could be removed. When we compare the evolved
threebit multiplier with the mnventional we notice that
there ae mnsiderable differences and it is not possble
looking at the evolved circuit to see whether there ae
repeaing modues. However we can seethat outputs P,
and P, are implemented in the same way in bah circuits.
In the evolved circuit P, is used twice whereas in the
conventional circuit it is never used again. P, is not re-
used in either circuit. P, reguires 7 gates in the evolved
circuit in comparison with 9 gates for conventiona cir-
cuit. One of the interesting feaures of this design is that
in the evolved circuit P, depends on P,. This does not
happen in the mnventional circuit. The same is true of
output P,, it too depends on P, in the evolved circuit.

The differences between two circuits were very
marked when we looked how the outputs P, depended on
the dementary products (AB). Firstly we noticed that in
conventional design A B, is nat used by any cther out-
puts. However in the evolved circuit this elementary
product is used in the implementation d P, and P,. The
elementary products (A,B,) and (A,B,) which are used in
the implementation o P, are not involved in any ather
outputs in the evolved circuit. However in conventional



implementation these products are used for every output
except P,.

It is clea that the way the multiplicaion processis
modeled in the evolved circuit is very different from the
human ore.

4.3 Multiple-valued one-digit adder with
carry

Multiple-valued logic contains a lot of different algebras,
which we can use to represent a given multiple-valued
logic function. Each of these logic algebras contains a
spedfic set of multiple-valued logic operators and is
cdled in the literature afunctiondly complete basis. This
means that it can implement any multiple-valued logic
function of n variables. As we saw in sedion 2 thereis a
space of expressons, which represents a given function.
This function can be represented by any of the functional
complete bases. There ae well-known human developed
tods to map this function using the spedfic functional
complete basis into a given expresson. However we a1-
counter problems when we want to combine some of
these functional complete bases to represent a function in
an economicd way. Traditionally this would mean that
we would have to develop a spedfic logic dgebra, this
takes a lot of time and effort and there is no guarantee of
success at the end of the process In addition it is only
after this procedure that we ae ale to map the logic
function into a given basis. This is one of the disadvan-
tages of the human design procedure. In order to over-
come this difficulty we, asin the binary case, adopted the
method o assemble and test. This all ows us to use any of
the logic sets and in principle obtain any possble logic
expresson. Note that the set used should contain one of
the functional complete basis known in order to guarantee
success Thus we potentialy can discover new and highly
efficient alternative representations which are wunter to
human intuition.

Here we will ook at the some evolved designs for
one-digit 3-valued adder with output carry. Threevalued
logic functions can take the values in the set {0, 1, 2}.
Thus, for example, in terms of base 3 arithmetic 1+2=10,
that isto say, the sumis 3 cary 0. In Figs. 21-22 we give
some examples of evolved circuits in the non-standard set
of multiple-valued gates. Note that within any of the sets
discussed we dways used afunctional complete basisas a
subset of the gates chosen.

Fig. 21 shows ome evolved designs for the one-digit
3-valued adder with cary. All these drcuits have the
same structure. The diff erence between them lieswith
gates 3 and 4. Analysis of the resulting logicd expres-
sions gives rise to equations which are extremely difficult
to prove in apurely algebraic manner.

Adder 1: Adder 2:
Sum Sum
D e Gk (L o RSy
D
i
Adder 3:

x Sum
2 1 > -
||

Figure 21: Evolved one-bit adder circuits which are iden-
ticd except for gates 3 and 4.

However because the assemble-and-test method dcesn’t
explicitly cary out forma agebraic operations we find

such unuwsual structures relatively easly.
1_|
2—| 2
X; T
x; |
1
Xz

Figure 22: Evolved one-bit adder with T-gate

Carry

The drcuit shown above involves four different types of
gates. We were unable to find any multi ple-valued logic
design methods, which allowed us to represent the func-
tion in this way. The dgebra of multiple-valued logic is
still incomplete however using the assemble-and-test
method all ows us to escape from the restrictions inherent
in aparticular algebra.

5 Fingerprinting and Principle Ex-
traction

There ae many types of principles which pdentialy
might be extraded from a database of genotypes of
evolved circuits. In Fig. 1 we saw that after the stage of
colleding evolved data one was faceal with a problem of
data mining. The extradion d knowledge from a large
colledion d evolved datais alittl e like trying to identify
which genes (in terms of base sequences of DNA) are
resporsible for particular inherited charaderistics. It is
not an easy task. One gproach to thisisto try to catego-
rise the various types of sub-circuit which are present in
the evolved genatypes. Since there ae many sub-circuits
which are permutations of one another one must find a
way of normalising the data so that the permutations are
redily identifiable. Additionally one must look for sub-



circuits of a particular form and size Thisis necessary to
avoid the combinatorial explosion which would occur if
one wished to enumerate dl possble sub-circuits. As a
first attempt in this diredion we dedded to analyse the
evolved genatypes (after permutational normalisation) in
terms of 2-into-1 sub-circuits. The mncept of a 2-into-1
sub-circuit is siown in Fig. X.

Cell

Cell

Figure 23: The 2-into-1 sub-circuit principle

In the diagram ead cdl may be ay logic gate including
amulti plexer. Each multi plexer would therefore have six
2-into-1 sub-circuits asociated with it (as it has three
inpus. Also if cdl 3 was a ab gate (type 7) there would
be two dfferent sub-circuits of form XY 7 and YX7 for
ead pair of X Y values (X,Y are dlowed gate types in
the genotypes). To avoid this explosion d possble sub-
circuits we ignared which particular inpus of cdl 3, cdls
1 and 2were mnreded to. We then indexed al possble
XY Z triples and coll ated the frequencies of occurrence of
these in the evolved material. We analysed the evolved
genatypes asociated with the 100% solutions for the
two-bit multiplier. There were 61 dstinct 2-into-1 prin-
cipleswhich occurred more than ten times. Fig. 24 shows
ahistogram of these.

250

200

.y
th
[=]

=
=]
(=]

Frequency

h
[=]

e = I = B~ S = S 7= SR 1= B =
- = & & & om o F Inowm o

2-into-1 principles

o

Figure 24: Distribution df 2-into-1 principles occurringin
evolved two-bit multiplier genotypes (with frequency
greder than 10

The seven highest pedks correspond to the sub-circuits
shown in Table 2. The 6-6-10 sub-circuit corresponds to
two ANDs into EX-OR. In human design terms one
would seethis as adding two multi plicaions $ we would
not be very surprised to seethis being an important prin-
ciple in the multiplication process The 6-6-6 sub-circuit
could be seen as conreded with the ‘carying forward’
operation. The third most frequently occuringis 6-15-7.

Table 2: Seven most frequently occurring sub-circuits

Cell 1 Cell 2 Cdl 3 Freguency
6 6 10 215

6 6 6 151

6 15 7 107

6 6 7 94

6 6 8 94

15 6 8 80

Actually gate 15 is logicdly identicd to a NAND gate,
thus 6-15-7 isa dose relative of 6-6-7. Also 6-6-8 isalso
a dose relative & gate 8 is the same & gate 7 with the
inpus reversed. Clealy the 6-6-7 sub-circuit is very im-
portant. Yet this dructure is not involved in the conven-
tional multiplier a al (Fig. 15). It can be seen in the
evolved example shown in Fig. 16. One can think of the
histogram shown in Fig. 24 as being a drcuit ‘finger-
print’. Admittedly it is just one of a number of possble
sub-circuit histogram plots but it is probably ore of the
most fundamental. Inspired by the obvious usefulness of
gates 6, 7, and 10(AND, AND with inverted inpu, and
EX-OR) we evolved many 100% solutions for the three
bit muilti plier where we had allowed only these threegate
types. The evolved threebit multiplier shown in Fig. 20
is an example of this. It is clea one shoud dstinguish
between inpus to oktain a better picture. This was car-
ried ou for the analysis of threebit multiplier solutions
which were 100% corred using gates 6, 7, and 10 othy.
The fingerprint is siown below:
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Figure 25: Distribution d 2-into-1 principles occurringin
evolved threebit multi plier genotypes

The highest pe& corresponds to 6-6-10 with 80 acur-
rences. The next highest pe& corresponds to 6-6-7 with
30 acaurrences.

There is gill much further work to be dore here. A
better way of trying to charaderise 2-into-1 principles
would be to look at logicd behaviours as this would re-
move the occurrence of sub-circuits which have diff erent
gene triples but the same behaviour. Also ore needs to
take into acourt that useful moduar sub-blocks may nat
fit nealy into the 2-into-1 category. This can be illus-




trated by the known usefulnessof the half-adder in addi-
tion and multiplier circuits. The half-adder is sown be-

low:
N J:?j D -

B

Figure 26: The half-adder sub-circuit

6 Conclusions

In this paper we have put forward the view that evolu-
tionary agorithms together with the assemble-and-test
methoddogy can be regarded as a discovery engine or
creaive madine for new designs. We studied thisideain
the ntext of digital logic. We suggested that new prin-
ciples may be &le to be discovered by examining a se-
ries of evolved designs, in ou case, for arithmetic logic
circuits. We examined the mncept of the space of all
circuit representations but fed that similar idess may
well cary over to the genera field of design. The human
designed agebras which form subsets of the spaceof all
representations both for binary and multiple-valued sys-
tems are analogows to small ‘pods of human principles
and that by employing the blind evolutionary technique
we may discover new principles. We dso looked at the
difficult problem of principle extradion from evolved
data. We fed confident that the processof leaning rew
principles from ablind evolutionary processis inevitable,
it isjust amatter of time.
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