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Abstract. Recent research has considered the role of locality in GP rep-
resentations. We use a modified statistical technique drawn from numer-
ical ecology, the Mantel test, to measure the locality of integer-encoded
GP. Weak locality is identified in a case study on Cartesian Genetic Pro-
gramming (CGP), a directed acyclic graph representation. A method of
varying syntactic program locality continuously through the application
of a biased mutation operator is demonstrated. The impact of varying
locality under the new measure is assessed over a randomly generated set
of polynomial symbolic regression problems. We observe that enforcing
higher levels of locality in CGP is associated with poorer performance
on the problem set and discuss implications in the context of existing
models of GP genotype-phenotype maps.
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1 Introduction

The notion of locality is a well-established property of representations in genetic
algorithms, known to have an impact on search performance [1-4]. Locality de-
scribes the design heuristic that small changes to a genotype, due to evolutionary
operators, should lead to correspondingly small changes in phenotype. The con-
cept can also be related to the assertion that the genotype to phenotype map
(GPM) should support a strong causal relationship between the evolving data
structure and its decoded expression [5]. Recently, work in genetic programming
has focused on extending the original concept of locality from binary strings to
standard, GP tree-based representations [6].

This paper considers the design of a novel method of measuring locality, with
the aim of assessing indirect, integer-encoded GPM. Our goal is to establish a
statistical approach which can then be applied to linear genotypes [7], encom-
passing methods such as Cartesian Genetic Programming (CGP) [8], Grammat-
ical Evolution [9,10] or Linear GP [11]. Characteristically, these GP encodings
feature an intermediate level of mapping between genotype and fitness evalu-
ation not traditionally incorporated in tree-based GP. The method described
here adopts a long standing technique from the field of numerical ecology, the
Mantel test [12-18]. The purpose of the test is to provide a means of rigorously
determining the significance of measured correlations between distance matrices.
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In Section 2, we briefly review related work on measuring locality in the GA
and GP literature and comment on previous definitions. Section 3 provides nec-
essary background on the Mantel statistic and introduces an extension to enable
the technique to address correlations in genotype-phenotype maps. Section 4
addresses selection of metrics on the genotype and phenotype space. Section
5 presents a set of preliminary experimental outcomes and analyses in a case
study on standard Cartesian GP, over a randomised set of symbolic regression
problems. We then discuss these initial results and conclude.

2 Related Work

The early work of Rothlauf is generally cited as the seminal work on locality
in the study of representations [1]. Rothlauf proposed aggregating the degree
of change in phenotype over the local neighbourhood of each genotype, defined
with respect to the particular variational operators:

L=Y Y delpy)—dp (1)

9€G p’cadj*(g)

where L > 0.0 is the level of locality (L = 0.0 is maximal). In our notation we use
G, dg, P and dp to denote the genotype space, phenotype space and respective
distance metrics over each. Equation 1 measures the locality of a map S : G — P
over all neighbouring pairs of genotypes in genotype space, where adj*(g) denotes
the set of phenotypes which correspond to the adjacent neighbours of ¢ in G.
Distances are summed up under the phenotype metric, relative to the minimum
distance in phenotype space, which we denote d,. Thus, in a high locality map
under Rothlauf’s definition, L tends to 0 and genotypes which are neighbours in
genotype space also have phenotypes which are similar under the metric applied
in that space. The original expression is not normalised with respect to the size
of the search space - more recently, extensions to Rothlauf’s work on locality in
GA for binary strings were proposed by Chiam et. al [19].

Studies of locality in GP [6,20,21], by contrast, have considered locality as
a direct property of the mapping between genotype and corresponding fitness
value. Galvan-Lopez et. al. considered a set of three definitions of locality, derived
from Rothlauf’s work, and systematically examined each over a set of standard
GP benchmarks [6]. This approach would seem appropriate for classical tree GP,
where there is no explicit intermediate state between genotype and fitness. How-
ever, for indirect GP maps which feature distinct phenotypes, we argue that an
understanding of locality should also be sought at the intermediate level. Fur-
thermore, current measures of locality by definition do not consider any relation-
ships at genotype distances beyond the immediate neighbourhood. The method
presented in this paper explores an alternative to these aggregative approaches
and studies directly the degree of correlation between genotype distances and
phenotype distances. There exists some commonality with the method of fitness
distance correlation (FDC) extensively addressed in both the GA and GP liter-
ature [22]. However, fitness distance correlation develops a measure of problem
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difficulty, by considering distances to the generally unknown optimum in fitness
space. We are instead preoccupied with understanding locality at the syntactic
level - the changes that are introduced into program structure by variations in
integer genotype. This enables a problem-independent view, focusing on analysis
of the representation and search operators, rather than addressing performance
against a particular fitness landscape.

3 The Mantel Test

The Mantel Test is a general, non-parametric statistical resampling technique
used in the exploration of correlations between two triangular distance matri-
ces [12] Historically, the test was designed to address the analysis of spatial and
temporal data from disease clustering. It has seen considerable application in nu-
merical ecology [14-17] and on genetic and linguistic data [18]. In a mathematical
sense, the Mantel test provides a permutation-based method of determining the
statistical significance of linear or monotonic relationships. The test is applicable
in situations when we wish to determine whether a correlation exists in the dis-
tances between elements sampled between two metric spaces. Note in particular
that it is not appropriate to use standard significance tests because distances
derived from the same element cannot generally be considered independent of
each other [18]. The technique is applied between two square distance matrices
of size n, labelled X and Y. The matrices contain the pair-wise differences cal-
culated between all elements of a sample under two measures of distance dx and
dy . By way of illustration, in the ecological context X might represent the geo-
graphical distances between samples of a species and Y corresponding measured
genetic distances. Differences are assumed to adhere to the symmetry property
of a metric, so both matrices are symmetric with zeros along the diagonal. The
original, ‘standardised mantel statistic’ is then given by the expression [23]

n—1 n S =
1 Xi;—X Yi;-Y
TM5_1;j2i21< oX >< oy ) @

where 737 is the linear correlation coefficient obtained, X, Y and ox, oy are
the mean and standard deviation calculated for X and Y respectively and s =
n(n—1)/2. This is equivalent to calculating the Pearson-product moment (linear
correlation) over the upper-half of the matrix.

3.1 Significance Testing on Genotype-Phenotype Maps

For rj; to be a useful statistic under sampling, significance testing should be
carried out against the null hypothesis, Hy that the distances in X and Y are
uncorrelated. A key realisation of the Mantel test is that rows and columns of
the matrix are exchangeable under the null hypothesis. That is, we expect to
be able to freely rearrange the labels of each set of distances. By permuting the
rows (and corresponding columns) of X and recalculating rjs, a permutation



An Ecological Approach to Measuring Locality 173

distribution can be constructed from which the significance of correlations in
the unpermuted data is obtained. Given that the null hypothesis is true, we
would expect that the unpermuted data should lie somewhere in the center of
this range. The test proceeds by obtaining the original unpermuted coefficient
r%, and a set of coefficients under permutation of X, denoted r = {r},..r{}},
where N is the total number of permutations. Let x C r such that z € x > r9,.
The probability of accepting the null hypothesis in the presence of an apparent
positive correlation is then given by the one sided test

Pl ~ 1 Q

that is the number of instances in which the recalculated coefficient equals or
exceeds 19,, divided by the total number of permutations. A similar test can be
carried out for the case of negative correlation.The test does not necessarily have
to support a linear model: it may be appropriate to compute 7, using an alter-
native statistic, such as Spearman rank-based correlation, using the permutation
test in exactly the same fashion. The result converges monotonically on the true
significance at large N. In practice, the number of permutations recommended
in the literature varies, but a value in the range of 1000-10000 permutations is
typically suggested [23].1

For the application of the Mantel statistic to artificial GPM, a method is
required to calculate it over particular distance intervals. This is to establish
whether a correlation exists only for closer, or more distant, genotypes. A similar
situation arises in numerical ecology, where correlations may be limited by time,
or by geographic distance. Previous derived techniques of the Mantel statistic
have consider correlation as a function of range, such as the ‘Mantel correlogram’,
which applies a model matrix to examine correlations over particular distance
classes [14]. We adopt a simplified approach, explicitly sub-dividing the distance
matrix. Let Xy be the upper triangle of X. A set of distance classes are selected
such that each distance class D, , is a subset of the elements of Xy where
p < X;; < q. Hence, a distance class contains the elements over which ry; is
computed which fall within the range (p, q). The corresponding set of distances
at the same index positions in Yy are also found. The coefficient rj; is calculated
seperately for each distance class and significance values derived as before, by
permuting the original matrix and recomputing ra; over that interval.

4 Distance Metrics under the Mantel Statistic

To derive distances between genotypes and phenotypes, an appropriate metric
must be selected for each space. Which metrics are suitable is informed by the
choice of representation and variation operators. For this initial analysis, we
neglect crossover and focus on the mutation operator. Numerous proposals have
been put forward for appropriate metric distance measures in GA/GP genotype
spaces, see for example the review in [25]. These have included classes such as:

! Standard methods for carrying out permutation tests are supported in numerical
ecology statistical packages such as ecodist and vegan [24], in R.
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M1. Edit distances (e.g. Hamming, Levenstein in the case of strings and tree or
graph edit distances respectively. [6,26])

M2. Subtree distance (e.g. Tree Alignment [27], Keijzer distance. [28])

M3. Information compression (e.g. Normalised Compression Distance. [6])

M4. Probabilistic measures (e.g. Subtree Crossover Operator. [29])

Although it is typically practical to define strict metrics for the genotype space
under the assumptions made in M1, M2 and M3, those measures based directly
on probabilities usually violate one or more of the metric criteria?. Calculation
of the Mantel statistic only requires that measures adhere to the symmetry
criterion [23]. We are therefore in principle free to select from amongst each
of the above classes of metric. As noted in [6], there is no priori knowledge of
which distance measures are most appropriate to describe differences on program
spaces. The approach described here chooses distance measures of types (3)
and (4). Our justification for this is one of pragmatism: to avoid being tied to
representation specific measures in our analysis and because of the potential
complexity of computing edit distances on large graphs (the graph edit distance
problem is NP-hard in general). A convenient measure for integer genotypes is
the expected number of independent attempts that would be required to generate
one genotype from another through a single mutation. Assuming that the two
genotypes are mutually reachable (Definition 1), then this is just the inverse of
the probability of mutating between both genotypes. We refer to this semimetric
as the expected variation distance M. The measure has the advantage that it
defines distance based on the actual transition probability.

Definition 1 (Mutually reachable genotypes). A pair of genotypes (g9,9")
are mutually reachable under some variation operator V, given that the proba-
bility of deriving ¢’ in a single operation V(g) is greater than zero.

Definition 2 (Expected variation distance). A function M : (g,¢',V) — Z
on a pair of mutually reachable genotypes (g,g') where M gives the expected
number of independent single operations on g such that there is an instance
V(g)=4¢" If g= g, we define M(g,g,V) = 0.

Derivation for CGP with Uniform Mutation Operator. We can illustrate
this approach by calculating the expected variation distance between a pair
of standard feed-forward CGP genotypes g and ¢g’. Genotypes are assumed to
be equal sized integer strings of length n, which represent a single row with
feedforward connections (see [8] for details), where output is derived from the
right-most node. Assume there are x matching integers between g and ¢’ and
n — x = y different values. The genotype is split into integers corresponding to
connections and functions. From the y different integer values, we have a subset of
size yp different values corresponding to functions and yo values corresponding

2 A metric function d on metric space @Q satisfies: 1. d(x,y) > 0; 2. d(z,y) = 0 iff
x=y; 3. d(z,y) = d(y,x) ; 4. d(z,y) > d(x, z) + d(z,y) where z,y, z € Q. We adopt
the conventional term semimetric when the triangle-inequality is relaxed.
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Table 1. CGP Search Parameters

Representation CGP Crossover No
Nodes 10 Selection Strategy (u + >\) (4 + 6)
Structure Single row feed-forward Population Size
Function Set {+.-.*, =} Fitness Samples 10 € { 2 2}
Terminal Set {0,1} Max Generations 2000
Mutation Rate 0.15 Runs 500

to connections. Assume a mutation operator acts on all values with uniform
probability m, where a mutation changes the allele to any other feasible integer.
Then, the probability of x values remaining the same is (1—m)®. The probability
of yr values from g mutating to the same function as that in g’ is (", )¥*, where
F' is the number of possible function choices. Let yc be the set of integer values
which contribute to yco. Each connection ¢ € yc has ¢; — 1 possible alternatives
(where ¢; is in general the total number of inputs, plus all previous nodes). Thus
the probability of obtaining the same set of connections is m¥c H 1 The
. Ci —
1€yc
total probability u of mutating from one CGP genotype to another is therefore

m 1
ulg.g) = (1 —m)*- (" -me [] (4)
F—-1 . C; — 1
1€y C
Taking the inverse and collecting terms gives the expected number of indepen-
dent mutations required, M =

M: (F—l)yF H c;i —1 (5)

Distances between genotypes under uniform mutation can be computed in other
integer representations such as grammar GP in a similar fashion.

5 Experiment

To test our approach, 50 biarity tree samples were obtained from a representa-
tive CGP genotype space using an arithmetic function set (including the pro-
tected division operator). Table 1 summarises the parameters used to initialise
each genotype. Sample biarity trees were produced recursively under the uni-
form mutation operator to a depth of 7 mutations, generating 511 genotypes per
sample.? The expected variation distance M was obtained pair-wise for all mem-
bers of each sample. The approach provided a set of 50 corresponding matri-
ces each containing ~150000 genotype distances. CGP phenotypes are directed
acyclic graphs. Measurements of the syntactic distance between CGP phenotypes
(dp) were derived using the Normalised Compression Distance (NCD) (Equation
6) adapting the procedure of [6] for tree GP, such that

3 Conceptually, this is a method of biased sampling similar to chain-referral sampling,
adopted extensively in sociological research [30]. Sampling via the mutation operator
generates trees which partially span the local neighbourhood for each genotype.
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n_ Clpp') —min(C(p),C(p"))
@)= (). C) ©

where C' is a function giving the length in bits of the string representation,
under UTF8, of the argument for a particular compressor. Each phenotype was
decoded into the prefix string representing the corresponding encoded arith-
metic expression. This expression excludes neutral nodes (junk) which do not
contribute to the phenotype. Pair-wise application of the NCD gives a measure
of similarity between phenotypes in the range of {0.0 : 1.0} + ¢, using the gzip
algorithm (where ¢ ~ 0.1, an error term induced because the compression is
not ideal). To provide a controllable method of exploring the impact of chang-
ing locality in a representation, an intermediary bias u,3 was introduced to the
uniform mutation operator:

/ —1
uas(p,p') = (1 4 e—oldr(p )—ﬁ)) -

The bias ung was employed to change the expected mutation distance be-
tween each pair of genotypes and is a standard sigmoid function, adjusted by a
scaling parameter o and translation § respectively. For each application of the
mutation operator to a genotype, ung defined the probability that a proposed
set of mutations will be accepted. The process is repeated until an acceptable
mutation is found and returned by the operator. To first order, this gives an
adjusted expected variation distance, where

Mas(,p') ™ = uas(p,p’) x ulp,p’) (8)

Hence by scaling «, the likelihood that mutations will result in phenotypes which
are syntactically similar can be defined. Varying the mutation bias equates to
scaling the locality of the mapping. The threshold value assumed in the sigmoid
function is set to an intermediate level of similarity, = 0.2. An example (for
one CGP sample) is given in Figure 1. The graphs are scatterplots, binned into
hexagons, illustrating qualitatively the distribution observed between the log-
scaled expected variation distance M and normalised compression distance dp.
The result is shown between two similar maps at low locality (o = 20, 10) and
at high locality (« = —10,—20). This directly compares the change in locality
induced by the bias. Inspecting the scatter graphs appears to indicate a weakly
positive trend, apparent over short distances. This follows from the decreasing
likelihood of making larger syntactic changes to the phenotype, under the uni-
form mutation operator. Relatively probable mutations, M ~ [0 - 20] correspond
to smaller changes in compression distance, dp ~ [0.1 — 0.3]. The majority of
distances observed in the region M ~ [20 - 40] (between genotypes situated on
lower branches of the sample) occur with lower probability and correspond to
greater variation in syntactic change.

Using the Mantel test, we can validate these qualitative observations. Figure
2 shows the range of corresponding Mantel coefficients ry; calculated over all
samples, for linear correlation, as a function of distance. It can be inferred that
an overall weak positive correlation exists in the CGP mapping, which falls off as
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NCD between Phenotypes (d,)
MCD between Phenctypes (d,)

NUU between Fhenotypes (d,)
NCD between Phenotypes (d)

10 20 30 40 10 20 1 ] 40
Expected Mutation Distance between Genctypes (log 10) Expected Mutation Distance between Genotypes [log 10)

Fig. 1. Illustration of the effect of the NCD mutation bias on genotype-phenotype
correlation. Top left: Lowest locality. Bottom right: Highest locality.

a function of genotype distance. A set of 1000 permutations was then generated
for each distance matrix to test significance at P(Hp) < 0.005, for a set of 8
distance classes from M = 0.0 : 40.0. The correlations found to be significant
under permutation are labelled (*). Inclusion of the Mantel test therefore gives
a firm basis from which to reject the null hypothesis and accept the correlation.
The effects of the mutation bias are also apparent (contrast positive o with
negative «).

To explore the relationship between syntactic locality and performance, a pre-
liminary experiment was carried out using a randomly generated selection of 38
symbolic regression problems. The problem instances were restricted in com-
plexity to simple 5th order polynomials with integer coefficients in the range of
{-2:2}. These are basic problems known to be solvable consistently using only
the simple CGP representation analysed, without the requirement for additional
features such as modularity. Five instances of each problem were considered,
applying the mutation bias with o = {—20,—-10,0,10,20} and 8 = 0.2. Fit-
ness was evaluated by deriving the euclidean distance over the set of uniformly
distributed sample points. Other parameters (Table 1) were informed per com-
mon previous estimates in CGP [8]. The parameters have not been optimised
to account for interaction with the mutation bias. Table 2 shows the corre-
sponding probability of success 1 at each locality level after 2000 generations,
estimated in each instance from the fraction of 500 runs which successfully re-
covered the expression. For the 21 polynomial problems with an average success
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Fig. 2. Measured Mantel correlation for CGP with different levels of mutation bias.
Top left: Lowest locality. Bottom right: Highest locality.

probability 77 greater than 10% (denoted with a }), a general tendancy can be
observed towards better performance at lower levels of locality. Of this subset, in
19 of the 20 cases the probability of success was higher for a = 20 than o« = —20.
In the remaining cases with success probability below 10%, no measurable trend
is observable outside of experimental error. All problems were solved successfully
over at least one set of runs.

6 Discussion

The weak correlation observed between genotype and phenotype distances in
Figures 1 and 2 is consistent with the variation in structure that small mutations
can impose in this representation. Altering a single node connection in CGP
may cause a large number of functions to be disconnected. Similarly, if the
same node is connected to many neighbours, then adjusting it will produce a
disproportionate change to the syntax of a program. There is therefore an overall
tendancy for parents to produce syntactically similar offspring, but this is offset
by the potential for large structural change. The relatively small impact of the
mutation bias also suggests this relationship is difficult to suppress, given that
it is a direct consequence of utilising a graph-based structure.
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Table 2. CGP success probability n with respect to locality

Polynomial Expression 50 10 'g 10 20 72017
—1— 223 4 2% 0.236 0.268 0.286 0.304 0.288 +
—2— 22 — a2 — 2% 0.102 0.116 0.158 0.142 0.174 +
—2 — g3 0.254 0.314 0.386 0.404 0.450 +
—222 4 224 4 245 0.152 0.196 0.226 0.196 0.244 +
—222 — 223 0.556 0.570 0.594 0.616 0.676 +
—223 4 2% 0.646 0.758 0.792 0.814 0.790 +
—223 4 25 0.196 0.278 0.350 0.360 0.394 +
—a2? 4 23 4 224 0.684 0.722 0.790 0.840 0.866 +
—z — a? 0.626 0.744 0.792 0.840 0.868 +
1— 202 — 225 0.556 0.570 0.594 0.616 0.676 +
1—a+ 223 4+ 24 0.290 0.324 0.370 0.322 0.326 +
1—a4a2 - 0.766 0.840 0.878 0.894 0.924 +
14 23 4 245 0.170 0.214 0.198 0.198 0.216 +
24 22 — a2 — 225 0.228 0.226 0.260 0.248 0.272 +
24+ 22 — 23 0.422 0.486 0.516 0.516 0.572 +
202 — 23 4 2% 0.382 0.446 0.492 0.524 0.522 +
202 — 23 4 2% — 25 0.198 0.256 0.232 0.290 0.282 +
222 4+ 23 — 204 — &5 0.504 0.592 0.540 0.536 0.524 t
20 + 22 — 223 0.202 0.216 0.206 0.230 0.276 +
o+ 222 — 223 0.610 0.672 0.642 0.670 0.684 +
—2 — 222 — 245 0.034 0.042 0.038 0.014 0.028 -
— + 2z + ot — 225 0.122 0.122 0.112 0.110 0.116 +

—2 422 — 22 — 223 + 22%  0.002 0.006 0.000 0.000 0.000
—2+4a2—a22 —22% — 225  0.001 0.014 0.004 0.004 0.040 -
—225 — 223 — 222 — 22 — 1 0.016 0.016 0.004 0.040 0.008
—22 + 22° + 22% 4 225 0.064 0.050 0.040 0.048 0.040 -
—22 + 203 4 2% — 225 0.006 0.020 0.006 0.006 0.006 -
—22 + 20 — 222 — 2% — 225 0.002 0.002 0.000 0.000 0.002 -

—22 4+ 22 — 223 4 22% — 225 0.006 0.010 0.004 0.006 0.008 -

1 - 20+ 22— a3 - b 0.120 0.098 0.092 0.084 0.046 -
1 — a3 4 224 — 225 0.046 0.036 0.030 0.038 0.022 -
14222 — 23 + 22% — 225 0.020 0.044 0.024 0.018 0.006 -
14 22 — 22 4 22° 0.106 0.112 0.092 0.086 0.082 -

2 — 1o — 222 + 223 — 2% — 2% 0.008 0.002 0.002 0.002 0.002 -
2 4 222 + 23 — 224 — 4 0.070 0.068 0.050 0.048 0.042 -
24 2 — 202 — 223 4 2F 0.038 0.034 0.030 0.030 0.042 -

242 —a2 -2t JL;’ 0.052 0.024 0.032 0.032 0.028 -

242 —a+at -2 0.052 0.024 0.032 0.032 0.028 -

The trend of the symbolic regression results implies, somewhat counter-
intuitively, that higher levels of correlation between genotype and phenotype
distance tended to produce poorer performance in CGP. We consider three fea-
sible explanations. Firstly, it is likely that the constraints imposed by high lo-
cality have restricted the diversity of the search, which may render intermediary
schema difficult to reach. Secondly, in Rothlauf’s model of locality, poorer per-
formance under higher locality can be associated with fitness landscapes which
are misleading [1] or deceptive (for example, GA trap functions). Further inves-
tigation of the fitness landscapes for these specific problem instances would be
required to determine whether this is the case for this representation. Thirdly,
it is unclear how features of the CGP genotype-phenotype map not addressed
here, such as high redundancy, or structural bias [26] contribute to the trend.

In practice, using locality as a general performance predictor, or as a method
of directly tuning existing genotype-phenotype maps, is clearly a challenging is-
sue in integer encoded GP. Bypassing the intermediary stage and relating geno-
type and fitness values may lead to better outcomes on individual problems, but
provides limited guidance for improving GP representations in general. Despite
these outstanding problems, from this initial work we anticipate that the Mantel
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test will prove a useful addition to existing approaches in statistical analyses
of GP genotype-phenotype maps. It is encouraging that a technique founded in
ecology can also contribute to the study of a complex artificial system.

7 Conclusions

The Mantel test, a statistical technique from numerical ecology, was adopted to
analyse the locality of GP maps. As a case study, we examined an established in-
teger representation, CGP. It was observed that a weakly positive correlation ex-
ists for CGP over short genotype distances, when using arithmetic function sets.
We introduced a method of scaling the locality of a CGP genotype-phenotype
map, by providing a bias into the mutation operator based on the normalised
compression distance between phenotypes. To our knowledge, this is the first
instance of explicitely controlled locality explored within a graph-based repre-
sentation. The effect of varying locality on performance was measured for ran-
domly generated polynomial symbolic regression problems. Higher locality was
associated with reduced performance over 19 instances. We infer that employing
less local maps may be advantageous on these classes of problem. In the future,
we intend to test the robustness of this approach by applying it to other non-
standard genotype-phenotype maps, such as grammar GP. Direct comparisons
with alternative locality measures would also be appropriate.

Acknowledgements. Particular thanks are due to Dr. Dan Franks and other
members of the York Centre for Complex Systems Analysis for advice concerning
the Mantel statistic.
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