SMCGP2: Finding Algorithms that Approximate Numerical
Constants Using Quaternions and Complex Numbers

Simon Harding
Department Of Computer
Science
Memorial University
Newfoundland, Canada
simonh@cs.mun.ca

ABSTRACT

Self Modifying Cartesian Genetic Programming 2 (SM-
CGP2) is a general purpose, graph-based, developmental
form of Cartesian Genetic Programming. Using a combina-
tion of computational functions and special functions that
can modify the phenotype at runtime, it has been employed
to find general solutions to a number of computational
problems. Here, we apply the new SMCGP technique
to find mathematical relationships between well known
mathematical constants (i.e. pi, e, phi, omega etc) using
a variety of functions sets. Some of formulae obtained are
distinctly unusual and may be unknown in mathematics.

Categories and Subject Descriptors

1.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.1.2 [Software]: Automatic Programming

General Terms
Algorithms

Keywords

Genetic programming, developmental systems

1. INTRODUCTION

Self-Modifying Cartesian Genetic Programming (SMCGP)
[1] is a form of Genetic Programming (GP) that includes
time (i.e. iteration) in the genotype-phenotype map. Through
the inclusion of self-modifying (SM) functions in its function
set, SMCGP allows a genotype to be iterated into a possibly
unlimited sequence of phenotypes. Each phenotype encodes
a computational function that can be assessed for fitness.
It has been used to find programs that can approximate
fundamental mathematical constants, m and e to arbitrary
precision [2]. The method showed that it was possible to
discover mathematically exact new algorithms (for 7) and
re-discover others (for e) that are based on the recurrent
and iterative methods used by mathematicians. SMCGP
was able to find many such programs with ease, and
some of them were simple enough to be interpretable by
humans. This paper applies a new form of SMCGP, called
SMCGP2, presented in a companion paper [3] which is a

Copyright is held by the author/owner(s).
GECCO’11, July 12-16, 2011, Dublin, Ireland.
ACM 978-1-4503-0690-4/11/07.

Julian F. Miller
Department of Electronics
University of York
York, UK
jfm7 @ ohm.york.ac.uk

197

Wolfgang Banzhaf
Department Of Computer
Science
Memorial University
Newfoundland, Canada
banzhaf@cs.mun.ca

two-dimensional extension of SMCGP. We apply SMCGP2
to the problem of approximating an extended suite of well
known mathematical and physical constants (see Section 3).
The main novelty of this paper is that we have further
extended the representation here so that SMCGP2 can
handle complex and quaternion type data.

2. SMCGP2

In summary, the SMCGP2 genotype is a grid of nodes,
where each node encodes several elements. Each node
contains genes for its function (either computational or
self modifying), a list of which other nodes it connects
to, a numeric constant and parameters used by the SM
functions. During execution, a copy of the genotype is made,
which becomes the phenotype. This phenotype program
is iterated, and between iterations the phenotype can be
altered by SM functions used in the previous iteration. See
[3] for a complete description. SM functions include: the
ability to duplicate sections of the phenotype, and insert
them elsewhere in the phenotype, copying sections and over-
writing existing nodes, deleting sections, rows or columns,
and adding blank rows or columns. Computational nodes,
in this instance, are conventional mathematical operations.
Any addition/removal of nodes in SMCGP2 results in a
valid phenotype, as nodes are connected to each other using
‘relative addressing’. SMCGP2 uses the same input/output
strategy as SMCGP, where special functions are used to
obtain the value of the ‘next available’ input. An ’output’
function indicates which nodes can be used for outputs.

SMCGP2 uses a simple, 144 evolutionary strategy is
applied. Genotypes are 5 nodes high, by 20 nodes wide. A
mutation rate of 5% is used, with each gene having an equal
probablity of being changed. The maximum SM size is 1,000
nodes. The maximum size of a phenotype is 100,000 nodes.
The maximum number of SM operations that can be applied
per iteration set to two. Phenotypes are parsed backwards
(i.e. bottom-right to top-left).

The fitness of an individual is the difference between the
target value and the program’s output on the final iteration.
Up to 20 iterations are allowed, but if there is convergence
the fitness function will stop iterating. For each iteration,
the program is given the iteration index, the previous output
and the list of other constants as inputs. On the first
iteration, the value passed as the previous output is 0. This
fitness function is similar to that used in previous work [2],
but does not penalize the evolved program if it does not use
the developmental properties of SMCGP.

Task Computational Effort
Target | Inputs Real | Complex | Quaternions
Function Set A
™ E 0, Q 25,837,868 | 113,737,960 | 58,508,652
E 7,0, Q 9,801,632 2,569,164 40,940,964
Q E, o 31,340,260 | 9,671,436 | 36,978,508
© E,m,Q 5,790,404 11,766,552 2,276,604
@ E,p,mQ | 63,629,460 | 23,667,012 70,381,488
Function Set B
™ E, 0, Q 63,797,488 | 53,984 28,226,224
E 7,0, Q 5,246,040 1,347,216 25,997,720
Q E,p,m 17,834,924 | 28,696,284 32,902,888
© E,mQ | 3,393,576 | 11,721,056 | 2,425,424
o E,o,mQ | 31,803,592 | 8,970,248 | 4,571,280
Function Set C
™ E,p,Q 53,428 56,500 20,506,088
E w0, 1,193,832 6,808 43,645,400
Q E,po,m 31,900,424 | 9,951,028 28,677,960
o E,m,Q 7,448,140 | 14,147,208 | 2,960,640
@ E,p,m,Q | 17,460,480 | 15,733,928 7,485,728

Table 1: Computational Effort for each task.

Function Set | Real | Complex | Quaternion
A 53.6 | 49.6 24

B 56 83.2 71.2

C 84.8 | 86.4 69.6

Table 2: Average percentage success per function
set for each number system.

3. RESULTS

In our previous work, experimentation was limited to just
m and e. Here the number of target constants is increased
to cover a range of interesting constants. Additionally,
different conditions were tested (i.e. different input values
and function sets) Each task was tested with all three
number types.

7 and e are familiar mathematical constants. A large
number of known ways exist to approximate these numbers.
 is the Golden Ratio (~ 1.61803). Known solutions include
continuous fractions, an irrational quadratic and an infinite
series. The omega constant, €2, is ~ 0.567143.The Fine
Structure Constant « (= 0.007297) is a fundamental phys-
ical constant that relates several other physical constants.
The value is determined by measurement, however several
numerological approximations also exist.

Three different function sets were used: A,B and C. Due
to space, we have omitted the complete listing. However,
function set A contains primitive functions, B adds the
ability to use evolved numerical constants and set C add
trigonometric and power functions. Each group ,contains
the previous groups functions i.e. group B also contains the
functions in group A, and C contains those in both A and
B.

SMCGP2 was able to find many solutions to the problems
given. Tables 1 and 2 shows that in general, the more
complete the function set, the more likely solutions are to
be found. However, a large majority of the solutions are
very involved, especially when SMCGP2 uses development
to produce iterative or recursive programs. It appears that,
in general, it is slightly easier to evolve solutions using
complex numbers than either quaternions or real numbers,
and that using quaternions results in the worst average
performance. However, it is difficult to compare these results

198

between number systems as the function sets are not the
same. We will release extensive appendices can be found at
http://www.cs.mun.ca/ simonh/smcgp2/constants/. The
following examples are illustrative of the results.

The following equation appears to link e to 2, using
complex number operations, although it never uses the
imaginary components: e = 0 + inv ()"

In another example using complex numbers, we find this
curious relationship between Pi, e, some integer constants
and phi:

© = cAbs(/(coth(3) + tan(coth(3)™))—
T+mT4+T+7ET
— X
T+mT+7mT+T
T

%2024 — tanh(cos(tanh(e))) + exp(m + 7+ 7 + 7))
Here, the imaginary components do seem important to
the calculation. Whilst this equation looks like it may
simplify, we discovered that it only works because of the
implementation. Minor rounding errors, typically only
visible on the last digit of the double precision numbers,
become compounded and it appears there is some inflection
point in the calculation. For example tan(w + w + 7 + 7)
does not resolve to 0, as the summing of four 7w values does
not produce exactly 4.

exp(r+m+m+7m)+

tan(m + 7+ 7+) X

4. CONCLUSIONS

The results show that quaternions are equal, or better, in
terms of success 7 times out of 15 experiments. Similarly,
complex numbers are equal or better than reals for 10 out
of 15 experiments. We can therefore say that the number
systems and their function sets do seem preferable under
some, but not all, conditions.

We are convinced that serious efforts in using evolutionary
algorithms, and Genetic Programming in particular, with
more complex number systems will lead to surprising results
in the future.

5. ACKNOWLEDGMENTS

WB acknowledges funding from Atlantic Canada’s HPC
network ACENET and by NSERC under the Discovery
Grant Program RGPIN 283304-07.

6. REFERENCES

[1] S. Harding, J. F. Miller, and W. Banzhaf.
Self-modifying cartesian genetic programming. In

H. Lipson, editor, GECCO, pages 1021-1028. ACM,
2007.

S. Harding, J. F. Miller, and W. Banzhaf. Self
modifying cartesian genetic programming: finding
algorithms that calculate pi and e to arbitrary
precision. In Proceedings of the 12th annual conference
on Genetic and evolutionary computation, GECCO ’10,
pages 579-586, New York, NY, USA, 2010. ACM.

S. Harding, J. F. Miller, and W. Banzhaf. SMCGP2:
Self modifying cartesian genetic programming in two
dimensions. In Accepted for publication in GECCO
2011, GECCO 11, New York, NY, USA, 2011. ACM.

2l

