
In Search Of Intelligent Genes: The Cartesian
Genetic Programming Computational Neuron

(CGPCN)

Gul Muhammad Khan, Julian, F. Miller, David Halliday

NWFP UET Peshawar, Pakistan; Intelligent System Design Group, University of York, UK.
drgul@cgpneuron.com, jfm7@ohm.york.ac.uk, dh20@ohm.york.ac.uk.

Abstract— Biological neurons are extremely complex cells
whose morphology grows and changes in response to the ex-
ternal environment. Yet, artificial neural networks (ANNs) have
represented neurons as simple computational devices. It has been
evident for a long time that ANNs have learning abilities that
are insignificant compared with some of the simplest biological
brains. We argue that we understand enough neuroscience to
create much more sophisticated models. In this paper, we report
on our attempts to do this. We identify and evolve seven programs
that together represents a neuron which grows post evolution
into a complete ’neurological’ system. The network that occurs
by running the programs has a highly dynamic morphology in
which neurons grow, and die, and neurite branches together with
synaptic connections form and change. We have evaluated the
capability of these networks for playing the game of checkers.
Our method has no board evaluation function, no explicit
learning rules and no human expertise at playing checkers is
used. The learning abilities of these networks are encoded at
a genetic level rather than at the phenotype level of neural
connections.

I. INTRODUCTION

The idea of constructing programs modeled on the brain is

motivated by systems which exhibit intelligence, the capability

for learning, and self adaptation. The brain has many highly

desirable features that are hard to replicate in conventional

computer systems, it is developmental, in that it acquires

increasingly sophisticated capabilities over time and although

constantly changing, yet it always retains its integrity as a

learning system. It is adaptive, and shows plasticity to changes

in its environment, so that new experiences and stimuli are

incorporated into the neural system without altering existing

capabilities. It shows tolerance to damage and the ability to

self-repair and self-reorganize in such a way that it retains

functionality, the brain is highly versatile in its ability to learn

diverse tasks and to develop abstract symbolic models which

enable the living system to operate effectively in complex

environments.

It is apparent that although highly complex, the brain is

made of essentially similar building blocks and that these

blocks are themselves composed of highly interconnected

networks of similar neurons. In the same way that the devel-

opmental engine of the biological cell contains the mechanism

for building the human body, we believe that the key to the

sophistication of the brain lies in the developmental power of

the neuron.

The motivation behind the research of this work is to

develop a system capable of learning and adapting itself to

the environment. Artificial Neural Networks (ANNs), though

inspired by the brain have largely ignored many aspects of

biological neural systems [1]. Originally, there were good

reasons for this. Simple models were required that could

be executed on relatively slow computers. Also they were

amenable to formal analysis. However, the computational

power of modern computers has made more complex neuro-

inspired approaches much more feasible. At the same time,

our understanding of neuroscience has increased consider-

ably. Important neglected aspects include neural development,

neuron structure and mechanisms of communication between

neurons. ANNs consider the brain as a connectionist system

just like nodal network, and each neuron is considered as

a node containing signal processing functions. Real neurons

do complex processing through its neurite branches before

the signal reaches the soma, where a decision about signal

transformation is made based on the signals received through

dendrites. Biological neurons are located in space and transfer

signals to their neighbours through electrochemical signal by

making synapse. These synaptic connections are not fixed and

change over the course of time, also the branching structure

of neurons and the number of neurons in the brain changes.

These dynamic capabilities of the brain are responsible for

its generalized capabilities of learning and adaptation. Our

research goal is to produce a system which has capability of

learning to learn. In this work we have used a particular form

of GP called Cartesian Genetic Programming (CGP) [2]. Each

neuron is considered as a computational device with each sub-

processing part represented by a chromosome. The genotype of

a neuron consists of a collection of chromosomes representing

the sub-components of the neuron.

We have provided each neuron with a structural morphology

such that it consists of a soma, dendrites [3], axons with

branches and dynamic synapses [4] and synaptic communi-

cation. Neurons are placed in a two dimensional toroidal grid

to give branches a sense of virtual proximity. Branches are

allowed to grow and shrink, and communication between axon

branches and dendritic branches is allowed.

To achieve this we have idealized seven essential neural

574978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

components which we have represented as CGP chromosomes

encoding combinational digital circuits [5]. These chromo-

somes encode distinct computational functions representing

aspects of real neurons. This model allows neurons, dendrites,

and axon branches to grow, die and change while solving a

computational problem (when there is no evolution). Also the

synaptic morphology can change and affect the information

processing. While this model in undeniably quite complex

and involves many variables and parameters we feel this is

justified by the evident enormous complexity of the brain.

The computational network that forms when the seven chro-

mosomes are run (not evolved) grows a network of neurons,

neurites and synapses that reflect its own internal dynamics

and environmental interaction.

In our view the process of biological development underpins

learning. Development is the time dependent process in which

a system grows and is shaped by environmental interaction.

It is evident that in biology this emergent process begins at

a genetic level. This raises the question: how is a capability

for learning encoded at a genetic level? In this work we have

tried to answer this question on a classic problem in artificial

intelligence, the game of Checkers.

Conventional ANNs represent neurons as static networks

of extremely simple computational units that do not change

their topology while being trained. ANNs were proposed when

computers were in their infancy and were very slow, thus

simple models were at the time, the only feasible models.

However such static models are in marked contrast to what

happens in real brains. Brains grow and acquire extremely

sophisticated abilities over time. Indeed the most rapid learn-

ing occurs when brains are growing and changing (e.g. the

learning of language). There is also abundant evidence from

neuroscience that learning and memory are intimately related

to time-dependent neural processes [6] some of which cause

morphological changes in neurons [7]. In conventional ANNs,

memory is encoded in the form of static weights but we

know now that the location and mechanisms responsible for

remembered information is not fixed and purely synaptic,

but involves many mechanisms in constant (though, largely

gradual) change [8]. Even dendrites themselves should no

longer be regarded as passive entities that simply collect

and pass synaptic inputs to the soma, and Koch argues that

”dendritic trees enhance computational power” [9]. Neurons

communicate through synapses but synapses are not just a

static strength of connection, they change in a signal dependent

way over various time scales [7].

In this paper we are examining whether developmental

programs can be evolved that create a neural network that

can learn how to play checkers.

In AI research building computer programs that play games

has been considered a worthwhile objective. Shannon devel-

oped the idea of using a game tree of a certain depth and

advocated using a board evaluation function[10] that allocates

a numerical score according to how good a board position

is for a player. The method for determining best moves

from these is called minimax [11]. Samuel used this in his

seminal paper on computer checkers [12] in which he refined

a board evaluation function. After two computer players have

played a game, the loser is replaced with a deterministic

variant of the winner by altering the weights on the features

that were used, or by replacing features that had very low

weight with other features. The current world champion at

checkers is a computer program called Chinook[13]. which

uses deep minimax search, a huge database of end game

positions and a handcrafted board evaluation function based on

human expertise. More recently, board evaluations functions

for various games have been obtained through Artificial Neural

Networks (ANNs) and often evolutionary techniques have

been used to adjust the weights: Othello [14], Go [15], Chess

[16], and Checkers [17].

We have three major criticisms of these approaches. The

first criticism is in the use of a board evaluation function

and the minimax algorithm. Such methods appears to bear

little resemblance to the methods that human beings use to

play games well. Typically, human beings consider relatively

few potential board positions and evaluate the favourability of

these boards in a highly intuitive and heuristic manner. They

usually learn during a game, indeed, this is how, generally

humans learn to be good at any game. So since we are

interested in where learning comes from, we have rejected

these approaches. Instead our networks will not return a

numerical value for the favourability of a board position or

use minimax but merely indicate which piece to move and

where.

Our second criticism is with those methods that evolve

weights to achieve a high standard of play. This has no biolog-

ical plausibility. Firstly, natural evolution produces organisms

that are gradually better adapted to their environment and

this is an extremely slow process. Secondly, trying to evolve

weights will inevitably become infeasible when the number

of neural connections become very large. Thirdly, learning

in organisms happens in their lifetime and evolution is not
involved. We are interested in where this learning comes from,

and so we are trying to use evolution to create the rules

that construct a learning system. In this way the size of the

genotype will be unrelated to the size and connectivity of the

network. We emphasize that in our approach no evolution takes

place while the programs play checkers.

Since we do not know how to design a computational neuron

that constructs a learning system we use a method of automatic

program evolution called Genetic Programming to discover

this [18]. Our genotype is a set of seven chromosomes that

encode programs that represent various aspects of real neurons

[5]. As we will see, when the programs encoded in an agent’s

(player) genotype are executed they cause a computational

neural structure to grow that can play checkers. The key idea

here is that we do not evolve a neural network but we evolve
the programs that when executed build and continuously shape

and change the network at run time (when no evolution takes

place).

Section 2 reviews previous work on the evolution of de-

velopmental processes that build ANNs. Section 3 describes

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 575

the method we use to evolve the genotype in our system.

Section 4 provides the key features and biological basis of

the model. Section 5 describes the structure and operation of

our computational network. We present our results on checkers

in section 6 and then conclude the paper in section 7.

II. DEVELOPMENTAL ARTIFICIAL NEURAL NETWORKS

One of the earliest attempts to use development in ANNs,

evolved network architecture and the connection strengths for

robot control [19]. They used a 2-dimensional space for the

network, where a collection of artificial neurons are distributed

with growing and branching axons. The genetic code specifies

the instructions for axonal growth and branching. Connections

between neurons are made when one axon reaches another

neuron.

Cangelosi proposed a neural development model, which

starts with a single cell undergoing a process of cell division

and migration [20]. Each cell produces two daughter cells and

division and migration continues until a collection of neurons

is obtained. Neurons then grow axons to produce connections.

The rules for cell division and migration are stored in the

genotype. Gruau proposed an efficient developmental method

for developing traditional neural networks [21] using a tree-

based GP system. Rust et al. used a developmental model cou-

pled with a genetic algorithm to evolve parameters that grow

artificial neurons with biologically-realistic morphologies [22].

They also investigated activity dependent mechanisms [23] so

that neural activity would influence growing morphologies.

Although they showed that the technique was able to produce

realistic and activity dependent morphologies of neurons, they

did not investigate the networks carrying out a function.

Jakobi created an artificial genomic regulatory network [24]

that used ’proteins’ to define neurons in a recurrent ANN with

excitatory or inhibitory dendrites for robot control. Federici

presented an indirect encoding scheme for development of

neuro-controllers, and compared it with a direct scheme [25].

The adaptive rules used were based on the correlation between

post-synaptic electric activity and the local concentration of

synaptic activity and simulated refractory chemicals. Astor and

Adami’s ANNs involved artificial chemistry [26]. In an attempt

to avoid the computational expense of running programs

representing dendritic and axonal branches, Downing favours

a higher abstraction level which maintains key aspects of cell

signalling, competition and cooperation of neural topologies

in nature [27].

Although research into the use of development in ANNs

has been valuable and interesting, it has, so far, been of a

rather exploratory nature, with various authors building and

evaluating models on small problems. To our knowledge there

have been no developmental ANNs that have been applied to

substantial problems in AI and Machine Learning. This was

also one of the motivations for us to tackle checkers.

III. CARTESIAN GENETIC PROGRAMMING (CGP)

CGP is a well established and effective form of Genetic Pro-

gramming. It represents programs by directed acyclic graphs

Fig. 1. Structure of CGP chromosome. Showing a genotype for a 4 input, 3
output function and its decoded phenotype. Inputs and outputs can be either
simple integers or an array of integers. Note nodes and genes in grey are
unused and small open circles on inputs indicate inversion. The function
gene in genotype is underlined. All the inputs and outputs of multiplexers
are labeled. Labels on the inputs of the multiplexer shows where are they
connected (i.e. they are addresses). Input to CGP is applied through the input
lines as shown in figure. The number of inputs (four in this case) and outputs
(three in this case) to the CGP is defined by the user, which is different from
the number of inputs per node (three in this case i.e. a, b and c.)

[2]. The genotype is a fixed length list of integers, which

encode the function of nodes and the connections of a directed

graph. Nodes can take their inputs from either the output of

any previous node or from a program input (terminal). The

phenotype is obtained by following the connected nodes from

the program outputs to the inputs. For our checkers work

we have used function nodes that are variants of binary if-

statements known as 2 to 1 multiplexers [28] as shown in

figure 1.

The four functions in figure 1 are the possible input combi-

nations of a three input (two inputs and a control) multiplexer

(see numbers in rectangles). Multiplexers can be considered

as atomic in nature as they can be used to represent any logic

function [28].

Figure 1 shows the genotype and the corresponding phe-

notype obtained connecting the nodes as specified in the

genotype. The Figure also shows the inputs and outputs to

the CGP. Output is taken from the nodes as specified in the

genotype (6, 8, 4). In our case we have not specified the output

in the genotype and have used a fixed pseudo random list of

numbers to specify where the output should be taken from.

The evolutionary strategy utilized is of the form 1 + λ, with

λ set to 4. The parent, or elite, is preserved unaltered, whilst

the λ offspring are generated by mutation of the parent. The

best chromosome is always promoted to the next generation,

if two or more chromosomes achieve the highest fitness then

newest (genetically) is always chosen [28].

IV. KEY FEATURES AND BIOLOGICAL BASIS FOR THE

MODEL

Features of biological neural systems that we think are

important to include in our model are synaptic transmission,

and synaptic and developmental plasticity. Signalling between

biological neurons happens largely through synaptic transmis-

sion, where an action potential in the pre-synaptic neuron

576 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

triggers a short lasting response in the post-synaptic neuron

[29]. In our model signals received by a neuron through its

dendrites are processed and a decision is taken whether to fire

an action potential or not. Table I lists all the properties of

biological systems that are incorporated into our model. Table

I also shows the presence and absence of these properties in

existing ANNs and neural development models.

Neurons in biological systems are in constant state of

change, their internal processes and morphology change all

the time based on the environmental signals. The development

process of the brain is strongly affected by external envi-

ronmental signals. This phenomenon is called Developmental

Plasticity. Developmental plasticity usually occurs in the form

of synaptic pruning [30]. This process eliminates weaker

synaptic contacts, but preserves and strengthens stronger con-

nections. More common experiences, which generate similar

sensory inputs, determine which connections to keep and

which to prune. More frequently activated connections are

preserved. Neuronal death occurs through the process of

apoptosis, in which inactive neurons become damaged and die.

This plasticity enables the brain to adapt to its environment.

A form of developmental plasticity is incorporated in our

model, branches can be pruned, and new branches can be

formed. This process is under the control of a ‘life cycle’ chro-

mosome (described in detail in section 6) which determines

whether new branches should be produced or branches need to

be pruned. Every time a branch is active, a life cycle program

is run to establish whether the branch should be removed or

should continue to take part in processing, or whether a new

daughter branch should be introduced into the network.

Starting from a randomly connected network, we allow

branches to navigate (Move from one grid square to other,

make new connections) in the environment, according to the

evolutionary rules. An initial random connectivity pattern

is used to avoid evolution spending extra time in finding

connections in the early phase of neural development.

Changes in the dendrite branch weight are analogous to

the amplifications of a signal along the dendrite branch,

whereas changes in the axon branch (or axo-synaptic) weight

are analogous to changes at the pre-synaptic level and post-

synaptic level (at synapse). Inclusion of a soma weight is

justified by the observation that a fixed stimulus generates

different responses in different neurones.

Through the introduction of a ’life cycle’ chromosome, we

have also incorporated developmental plasticity in our model.

The branches can self-prune and can produce new branches to

evolve an optimized network that depends on the complexity

of the problem [30].

V. THE CGP COMPUTATIONAL NETWORK (CGPCN)

This section describes in detail the structure of the CGPCN,

along with the rules and evolutionary strategy used to run the

system1.

1For a complete description see the first authors PhD thesis, which is
available at http://miller.jules.googlepages.com/PhD-thesis-GM-Khan.pdf

External output

External Input

Fig. 2. On the top left a grid is shown containing a single neuron. The
rest of the figure is an exploded view of the neuron. The neuron consists of
seven evolved computational functions D, S, AS, DBL, SL, ASL, WP. D,
S, and AS are electrical and process a simulated potential in the dendrite,
soma and axo-synapse branch respectively. Three more (DBL, Sl and ASL)
are developmental in nature and are responsible for the life-cycle of neural
components (shown in grey). These respectively decide whether dendrite
branches, soma and axo-synaptic branches should die, change, or replicate.
The remaining evolved computational function (WP) adjusts synaptic and
dendritic weights and is used to decide the transfer of potential from a firing
neuron (dashed line emanating from soma) to a neighbouring neuron

In the CGPCN neurons are placed randomly in a two

dimensional spatial grid so that they are only aware of their

spatial neighbours (as shown in figure 2). Each neuron is

initially allocated a random number of dendrites, dendrite

branches, one axon and a random number of axon branches.

Neurons receive information through dendrite branches, and

transfer information through axon branches to neighbouring

neurons. The dynamics of the network also change since

branches may grow or shrink and move from one CGPCN

grid point to another. They can produce new branches and

can disappear, and neurons may die or produce new neurons.

Axon branches transfer information only to dendrite branches

in their proximity. Electrical potential is used for internal

processing of neurons and communication between neurons

and we represent it as an integer.

Health, Resistance, Weight and Statefactor
Four variables are incorporated into the CGPCN, repre-

senting either fundamental properties of the neurons (health,

resistance, weight) or as an aid to computational efficiency

(statefactor). Biological neurons clearly have a health since

neurons can become feeble and die. Neurites have electrical

resistance which is related to the length. The weight is an

analogue of their efficacy in transmitting signals. In our

model, the values of these variables are adjusted by the CGP

programs. The health variable is used to govern replication

and/or death of dendrites and connections. The resistance
variable controls growth and/or shrinkage of dendrites and

axons. The weight is used in calculating the potentials in the

network. Each soma has only two variables: health and weight.
The statefactor is used as a parameter to reduce computational

burden, by keeping some of the neurons and branches inactive

for a number of cycles. Only when the statefactor is zero the

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 577

Name ANNs Neural Biology CGPCN

development

Neuron Node with Node with Soma with Soma with

Structure connections axons and dendrites, axon dendrites, axon

dendrites and dendrite and dendrite

branches branches

Interaction of branches No No Yes Yes

Neural function Yes Yes Yes Yes

Resistance No Yes/No Yes Yes

Health No No Yes Yes

Neural Activity No No Yes Yes

Synaptic Communication No No Yes Yes

Arrangement of Fixed Fixed Arranged in space Arranged in

Neurons (Dynamic Artificial space

Morphology) (Dynamic

Morphology)

Spiking Yes, but Yes, but Yes Yes

(Information not all not all

processing)

Synaptic Plasticity Yes No Yes Yes

Developmental Plasticity Yes No Yes Yes

Arbitrary I/O No No Yes Yes

Learning Rule Specified Specified Unspecified Unspecified

Activity Dependent Morphology No Some Yes Yes

TABLE I

LIST OF ALL THE PROPERTIES OF BIOLOGICAL SYSTEMS THAT ARE INCORPORATED INTO CGPCN OR ARE PRESENT IN ANNS AND NEURAL

DEVELOPMENT MODELS.

neurons and branches are considered to be active and their

corresponding program is run. The value of the statefactor is

affected indirectly by CGP programs. The bio-inspiration for

the statefactor is the fact that not all neurons and/or dendrites

branches in the brain are actively involved in each process.

A. Inputs, Outputs and Information Processing in the Network
The external inputs (encoding a simulated potential) are

applied to the CGPCN and presented to axosynaptic electrical

processing chromosomal branches as shown in figure 3. These

are distributed in the network in a similar way to the axon

branches of neurons. After this the program encoded in the

axo-synaptic electrical branch chromosome is executed, and

the resulting signal is transferred to its neighbouring active

dendrite branches. Similarly we have outputs which read the

signal from the CGPCN through dendrite branches. These

branches are updated by the axo-synaptic chromosomes of

neurons in the same way as other dendrite branches and

after five cycles the potentials produced are averaged and this

value is used as the external output (see Fig 1). Information

processing in the network starts by selecting the list of active

neurons in the network and processing them in a random

sequence. Each neuron takes the signal from the dendrites

by running the electrical processing in dendrites. The signals

from dendrites are averaged and applied to the soma program

Fig. 3. A schematic illustration of a 3 × 4 CGPCN grid. The grid contains
five neurons, each neuron has a number of dendrites with dendrite branches,
and an axon with axon branches. Inputs are applied at five random locations
in the grid using input axo-synapse branches by running axosynaptic CGP
programs. Outputs are taken from five random locations through output
dendrite branches. The figure shows the exact locations of neurons and
branches as used in most of the experiments as an initial network. Each
gird square represents one location, branches and soma are shown spaced
for clarity. Each branch location is represented by where its terminal is
located. Every location can have as many neurons and branches as the network
produces, there is no imposed upper limit.

578 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

along with the soma potential. The soma program is run to

get the final value of soma potential, which decides whether a

neuron should fire an action potential or not. If soma fires,

an action potential is transferred to other neurons through

axosynaptic branches. The same process is repeated in all

neurons. Description of the seven chromosomes is given in

the next section.

B. CGP Model of Neuron

In the model, neural functionality is divided into three

major categories: electrical processing, life cycle and weight

processing.

Electrical Processing
The electrical processing part is responsible for signal pro-

cessing inside neurons and communication between neurons.

It consists of dendrite branch, soma, and axo-synaptic branch

electrical chromosomes.

The D chromosome handles the interaction of dendrite

branches belonging to a dendrite. It takes active dendrite

branch potentials and soma potential as input and the updates

their values. The Statefactor is decreased if the update in

potential is large and vice versa. If any of the branches

are active (has its statefactor equal to zero), their life cycle

program is run (DBL), otherwise it continues processing the

other dendrites.

The chromosome responsible for the electrical behaviour

of the soma, S, determines the final value of soma potential

after receiving signals from all the dendrites. The processed

potential of the soma is then compared with the threshold

potential of the soma, and a decision is made whether to fire an

action potential or not. If it fires, it is kept inactive (refractory

period) for a few cycles by changing its statefactor, the soma

life cycle chromosome (SL) is run, and the firing potential is

sent to the other neurons by running the program encoded

in axo-synapse electrical chromosome (AS). The threshold

potential of the soma is adjusted to a new value (maximum)

if the soma fires.

The potential from the soma is transferred to other neurons

through axon branches. The AS program updates neighbouring

dendrite branch potentials and the axo-synaptic potential. The

statefactor of the axosynaptic branch is also updated. If the

axo-synaptic branch is active its life cycle program (ASL) is

executed.

After this the weight processing chromosome (WP) is run

which updates the Weights of neighbouring(branches sharing

same grid square) branches. The processed axo-synaptic po-

tential is assigned to the dendrite branch having the largest
updated Weight.

Life Cycle of Neuron
This part is responsible for replication or death of neurons

and neurite branches and also the growth and migration of

neurite branches. It consists of three life cycle chromosomes

responsible for the neuron and neurites development.

The two branch chromosomes update Resistance and Health
of the branch. Change in Resistance of a neurite branch is

used to decide whether it will grow, shrink, or stay at its

current location. The updated value of neurite branch Health
decides whether to produce offspring, to die, or remain as it

was with an updated Health value. If the updated Health is

above a certain threshold it is allowed to produce offspring

and if below certain threshold, it is removed from the neurite.

Producing offspring results in a new branch at the same

CGPCN grid point connected to the same neurite (axon or

dendrite).

The soma life cycle chromosome produces updated values

of Health and Weight of the soma as output. The updated value

of the soma Health decides whether the soma should produce

offspring, should die or continue as it is. If the updated Health
is above certain threshold it is allowed to produce offspring

and if below a certain threshold it is removed from the network

along with its neurites. If it produces offspring, then a new

neuron is introduced into the network with a random number

of neurites at a different random location.

VI. THE GAME: AN AGENT PLAYS AGAINST AN ADAPTIVE

CHECKERS PLAYING PROGRAM

The CGPCN checkers player is trained against a minimax

based checkers program (MCP). Unfortunately we were unable

to adjust the standard of play of the MCP program and it was

obviously playing at high level. Each agent in the population

plays a game against the MCP with the agent starting each

game from a random network. The best playing genotype

based on fitness is selected as the parent for the new population

and is promoted to the next generation unaltered along with

four offspring (mutational variants).

When the experiment starts, the MCP makes the first move

and the updated board is the applied to the agent CGPCN.

The CGPCN network is then run for five cycles. During

this process it updates the potentials of the output (dendrite)

branches. These are averaged, and used to decide the direction

of movement for the corresponding piece. Each piece is allo-

cated an output dendrite branch in the CGPCN. The potentials

of these branches are updated during CGPCN process. The

updated values of these potentials are used to decide which

piece to move, unless there is a jump, which takes priority. For

more than one jump, the piece with highest potential makes

the jump.

The game is stopped if either the CGPCN of an agent dies

(i.e. all its neurons or neurites dies), or if all its or opponent

players are taken, or if the agent or its opponent can not move,

or if the alloted number of moves allowed for the game have

been taken.

CGP Computational Network (CGPCN) Setup Each

CGPCN has neurons and branches located in a 4x4 grid.

Initially the number of neurons is 5. Maximum number of

dendrites and neurite branches is 5 and 200 respectively.

Maximum statefactors are 7 (branch) and 3 (soma). Mutation

rate is 5%. Maximum number of nodes per chromosome is

200. Maximum number of moves is 20.

Fitness Calculation
Both the agent and the MCP are allowed to play a limited

number of moves and the fitness of the agent is accumulated

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 579

Fig. 4. Graph showing the fitness variation of a well evolved agent against
earlier ancestors

at the end this period using the following equation: Fitness =

A+200NK+100NM−200NOK−100NOM +NMOV , Where NK

represents the number of kings, and NM represents number

of men of the current player. NOK and NOM represent the

number of kings and men of the opposing player. NMOV rep-

resents the total number of moves played. A is 1000 for a win,

and zero for a draw. To avoid spending much computational

time assessing the abilities of poor game playing agents we

have chosen a maximum number of moves. If this number

of moves is reached before either of the agents win the game,

then A =0, and the number of pieces and type of pieces decide

the fitness value of the agent.

Inputs and outputs of the System
The input is an array of 32 elements, with each representing

a playable board square. Each of the 32 inputs represents one

of the following five different values depending on what is on

the square of the board (represented by I). The values taken by

I are as follows: if empty I=0, if king I=Maximum value(M)

232−1, if piece I=(3/4)M, if opposing piece I=(1/2)M, and fi-

nally if opposing king, I=(1/4)M. The board inputs are applied

in pairs to all the sixteen locations in the 4x4 CGPCN grid

(i.e. two virtual axo-synapse branches in every grid square).

Output is in two forms, one of the outputs is used to select

the piece to move and second is used to decide where that

piece should move. Each piece on the board has a virtual

dendrite branch in the CGPCN. All pieces are assigned a

unique ID, representing the CGPCN grid square where its

branch is located. Each of these branches has a potential,

which is updated during CGPCN processing. The values of

potentials determine the possibility of a piece to move (highest

potential piece is moved), with jump take priority. If more

than one jump then the piece with the highest potential jump,

jump with a king take priority (Rules of checkers), unless

there are more than one kings. In addition, there are also five

virtual dendrite branches distributed at random locations in the

CGPCN grid. The average value of these branch potentials

determine the direction of movement for the piece. Whenever

a piece is removed its dendrite branch is removed from the

CGPCN grid.

Results and Analysis During the course of evolution when

an agent was evolved against MCP, the agent was never able

Fig. 5. Graph showing Accumulated fitness variation (right)

to beat MCP or even have piece advantage within 20 moves.

So it was difficult to assess from the variation in fitness of the

agent during the course of evolution and whether it could learn

or not. MCP was playing at a higher level, and although the

agent learns different moves during the course of evolution,

MCP still manages to beat the agent, thus causing its fitness

to stay low. The variation in fitness of the agent appears to be

random. As the MCP produces a database of game moves, and

uses that in the calculation of its next move, it plays different

games every time even against the same opponent. Thus it

is difficult for evolution to select the best genotype for the

next generation. Although the genotype of the best agent is

promoted unaltered to the next generation it produces different

value of fitness, so it is difficult to obtain any improvement

against MCP.

To test whether any learning had taken place we tested

well evolved agents against less evolved agents in a one game

scenario, and found that the former almost always beats the

latter, in some of the cases it ends up in a draw, but even in

those cases the well evolved agent ends up with more kings

and pieces than the less evolved agent. Thus it is clear that

agents are improving their level of play. Figure 4 shows the

variation in fitness of a well evolved agent (from generation

800) against the fitness of a series of agents from earlier

generations (ancestors from generation 50, 100, 150.....750,

800). It is evident that the well evolved agent playing white

always beats the less evolved playing black. Its winning

margin is quite variable because its fitness is evaluated over

a single game. Figure 5 shows the cumulative fitness of the

well evolved agent over its series of games. The figure also

shows cumulative fitness variation that would have occurred

when a highly evolved agent beat the lesser evolved agent by

a fixed margin in every game with various piece advantages.

This allows us to assess how the cumulative winning margin

varied over evolutionary time.

The table in 6 presents a game between a highly evolved

agent and a less evolved agent. The figure also shows some

of the important board positions during the game. The highly

evolved agent is playing white (generation 1800) and ancestor

agent (generation 1050), now playing black.

The 6 moves by each players are sensible, but white ends

up with its pieces further advanced. However black leaves an

580 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Fig. 6. Labeled Board and positions at different stages of the game. Numbers
beneath boards show the board at moves 5, 6, 8, 10 and 12. Table on left lists
the first 18 moves played by the two players

empty square on its back rank after move 4 which later after

moving a piece from square 12 to 15 becomes catastrophic

one, as it means that white is forced to take two pieces and

acquire a king. Reasonable play resumes for a couple of moves

but then black moves its piece from square 10 to 14 and allows

white’s king on the back rank to take two pieces. On move

16 black gains some white pieces but white’s piece and king

advantage is too great, so white ends up in a winning position.

VII. CONCLUSION

We have presented a new developmental approach to the

construction of neural networks. It is our view, that only

through increasing the biological plausibility of neural models

will we be able to understand what learning is and how to

make artificial systems approach the learning ability exhibited

by real brains. As far as we are aware computer checkers is

the most substantial problem that developmental neural models

have been applied to. However, at this stage we have not

demonstrated that we can obtain an extremely good checkers

playing program, but we have demonstrated that evolution can

create rules that build stable (rather than chaotic or dying)

neural systems that play increasingly well. We haven’t yet

demonstrated that these systems can improve substantially

their level of play merely by playing checkers. Perhaps this

is not surprising, since for purely computational reasons we

were not able to evaluate the quality of each evolved neural

program over a long series of games. This is something we

intend to do in the future. Our eventual aim is to see if we

can evolve a general capability for learning.

REFERENCES

[1] K. Gurney, An Introduction to Neural Networks. London: Routledge,
1997.

[2] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
of the 3rd European Conf. on Genetic Programming (EuroGP), vol.
LNCS 1802, 2000, pp. 121–132.

[3] C. Panchev, S. Wermter, and H. Chen, “Spike-timing dependent com-
petitive learning of integrate-and-fire neurons with active dendrites,” in
Proc. International Conference on Artificial Neural Networks (ICANN),
J. R. Dorronsoro, Ed., vol. LNCS 2415. Springer-Verlag, 2002, pp.
896–901.

[4] B. Graham, “Multiple forms of activity-dependent plasticity enhance
information transfer at a dynamic synapse,” in International Conference
on Artificial Neural Networks (ICANN), J. R. Dorronsoro, Ed., vol.
LNCS 2415. Springer-Verlag, 2002, pp. 45–50.

[5] G. Khan, J. Miller, and D. Halliday, “Coevolution of intelligent agents
using cartesian genetic programming,” in Proc. of Genetic and Evolu-
tionary Computation Conference (GECCO), 2007, pp. 269 – 276.

[6] J. Smythies, The Dynamic Neuron. BradFord, 2002.
[7] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural

Science, 4th Edition. McGraw-Hill, 2000.
[8] S. Rose, The Making of Memory: From Molecules to Mind. Vintage,

2003.
[9] C. Koch and I. Segev, “The role of single neurons in information

processing,” Nature Neuroscience Supplement, vol. 3, pp. 1171–1177,
2000.

[10] C. Shannon, “Programming a computer for playing chess,” Phil. Mag.,
vol. 41, pp. 256–275, 1950.

[11] R. W. Dimand and M. A. Dimand, A History of Game Theory: From
the Beginnings to 1945. Urbana: Routledge, 1996, vol. 1.

[12] A. Samuel, “Some studies in machine learning using the game of
checkers,” IBM J. Res. Dev., vol. 3, no. 3, pp. 210–219, 1959.

[13] J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in
Checkers. Springer, Berlin, 1996.

[14] D. Moriarty and R. Miikulainen, “Discovering complex othello strategies
through evolutionary neural networks,” Connection Science, vol. 7, no.
3-4, pp. 195–209, 1995.

[15] N. Richards, D. Moriarty, P. McQuesten, and R. Miikkulainen, “Evolving
neural networks to play go,” pp. 85–96, 1998.

[16] G. Kendall and G. Whitwell, “An evolutionary approach for the tuning
of a chess evaluation function using population dynamics,” in IEEE
Congress on Evolutionary Computation (CEC 2001), 2001, pp. 995–
1002.

[17] K. Chellapilla and D. B. Fogel, “Evolving an expert checkers playing
program without using human expertise,” in IEEE Trans. on Evolution-
ary Computation, vol. 5, no. 5, 2001, pp. 422–428.

[18] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural selection. MIT Press, 1992.

[19] S. Nolfi and D. Parisi, Genotype for Neural Networks. In Arbib, M.A.
ed. Handbook of Brain theory and Neural Networks. MIT Press, 1995.

[20] A. Cangelosi, S. Nolfi, and D. Parisi, “Cell division and migration
in a ’genotype’ for neural networks,” Network-Computation in Neural
Systems, vol. 5, pp. 497–515, 1994.

[21] F. Gruau, “Automatic definition of modular neural networks,” Adaptive
Behaviour, vol. 3, pp. 151–183, 1994.

[22] A. Rust, R. Adams, S. George, and H. Bolouri, “Designing develop-
ment rules for artificial evolution,” in Proceedings of 3rd International
Conference on Artificial Neural Networks and Genetic Algorithms
(ICANNGA97). Springer Verlag, 1997, pp. 509–513.

[23] ——, “Activity-based pruning in developmental artificial neural net-
works,” in Proceedings of European Conference on Artificial Life
(ECAL’97), 1997, pp. 224–233.

[24] N. Jakobi, Harnessing Morphogenesis, Cognitive Science Research
Paper 423, COGS. University of Sussex, 1995.

[25] D. Federici, “Evolving developing spiking neural networks,” in Proceed-
ings of CEC 2005 IEEE Congress on Evolutionary Computation, 2005,
pp. 543–550.

[26] J. C. Astor and C. Adami, “A development model for the evolution of
artificial neural networks,” Artificial Life, vol. 6, pp. 189–218, 2000.

[27] K. L. Downing, “Supplementing evolutionary developmental systems
with abstract models of neurogenesis,” in Proc. of the 9th annual
conference on Genetic and Evolutionary Computation (GECCO). New
York: ACM, 2007, pp. 990–996.

[28] J. F. Miller, V. K. Vassilev, and D. Job, “Principles in the evolutionary
design of digital circuits-part i. genetic programming,” vol. 1:1/2, 2000,
pp. 7–35.

[29] G. Shepherd, The synaptic organization of the brain. Oxford Press,
1990.

[30] A. Van Ooyen and J. Pelt, “Activity-dependent outgrowth of neurons
and overshoot phenomena in developing neural networks,” Journal of
Theoretical Biology, vol. 167, pp. 27–43, 1994.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 581

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

