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Abstract. The paper studies the role of neutrality in the fitness land-
scapes associated with the evolutionary design of digital circuits and par-
ticularly the three-bit binary multiplier. For the purpose of the study,
digital circuits are evolved extrinsically on an array of logic cells. To
evolve on an array of cells, a genotype-phenotype mapping has been
devised by which neutrality can be embedded in the resulting fitness
landscape. It is argued that landscape neutrality is beneficial for digital
circuit evolution.

1 Introduction

Digital circuit evolution is a process of evolving configurations of logic gates for
some prespecified computational program. Often the aim is for a highly efficient
electronic circuit to emerge in a population of instances of the program. Digital
electronic circuits have been evolved intrinsically [1] and extrinsically [2-6]. The
former is associated with an evolutionary process in which each evolved electronic
circuit is built and tested on hardware, while the latter refers to circuit evolution
implemented entirely in software using computer simulations.

A possible way to study the evolvability of digital circuits is to consider the
evolutionary design as a search on a fitness landscape [7]. The metaphor comes
from biology to represent adaptive evolution as a population flow on a mountain-
ous surface in which the elevation of a point qualifies how well the corresponding
organism is adapted to its environment [8]. In evolutionary computation the fit-
ness landscapes are simply search spaces that originate from the combination of
the following objects

1. A set of configurations that are often referred to as genotypes.

2. A cost function that evaluates the configurations, known in evolutionary
computation as a fitness function.

3. A topological structure that allows relations within the set of configurations.

These define the structure of the fitness landscape. Recently it has been shown
that the landscape structure affects the evolvability of a variety of complex



systems [9-15]. In evolutionary computation the notion of evolvability refers to
the efficiency of evolutionary search.

The circuit evolution landscapes associated with the evolution of various
arithmetic functions were studied in [7,16,17]. It was shown that these land-
scapes are products of three subspaces with different landscape characteristics.
These are the functionality, internal connectivity, and output connectivity land-
scapes. In general they are characterised with neutral networks and sharply
differentiated plateaus. A set of genotypes defines a neutral network if the set
represents a connected subgraph of genotypes with equal fitnesses [18,19]. This
characteristic of fitness landscapes is referred to as neutrality.

The landscape neutrality in digital circuit evolution originates mainly from
the genotype-phenotype mapping by which a digital circuit is encoded into a
genotype. The mapping is defined in such a way that it allows neutrality. This
affords a study of the important question of the role of landscape neutrality in
the evolutionary design of digital circuits. For the purpose of this study, digital
circuits are evolved extrinsically. This allows freedom to explore the method-
ology and thus to extract principles of the evolutionary design of circuitry in
general [17].

Studies in evolutionary biology suggest that adaptive evolution is facilitated
by a genetic variation that is due to neutral or nearly neutral mutations [20-
23]. In [24] it was suggested that the role of landscape neutrality for adap-
tive evolution is to provide a “path” for crossing landscape regions with poor
fitness. This implies a scenario of adaptive evolution in which a population
evolves on a neutral network until another neutral network with a higher fit-
ness is reached [25]. Similar conclusions were attained in a study of the tech-
nique of genotype-phenotype mapping that appeared to be suitable for solving
constrained optimisation problems by genetic programming [26]. Evidence that
fitness improvements may occur in a genetically converged population due to
neutrality was given also in [27].

Does the evolutionary design of digital circuits benefit from the neutrality
in the fitness landscapes? In this paper this question is answered in the affir-
mative. The paper is organised as follows. The next section introduces digital
circuit evolution in greater details. Section 3 represents the evolution of a three-
bit multiplier. The neutrality of the fitness landscapes is studied in section 4.
Section 5 studies the benefit of landscape neutrality for the adaptive design of
digital circuits. The paper closes with a summary and suggestions for future
work.

2 Digital Circuit Evolution

The technique used in the evolutionary design of digital circuits in this paper
is that adopted in the framework of Cartesian Genetic Programming [28,29]
and it uses an evolutionary algorithm with truncation selection and mutation.
The latter is defined as a percentage of the genes in a single genotype which
are to be randomly mutated. In this paper the percentage chosen results in 3



mutated genes per genotype. The algorithm deals with a population of digi-
tal feed-forward electronic circuits that are instances of a particular program.
The population consists of 1 + A genotypes where A is usually about 4. Initially
the elements of the population are chosen at random. The fitness value of each
genotype is evaluated, by calculating the number of total correct outputs of the
encoded electronic circuit in response to all appropriate input combinations. For
convenience, in this paper the fitness values are scaled in the interval [0, 1]. To
update the population, the mutation operator is applied to the fittest genotype,
to generate offspring. These together with the parent constitute the new pop-
ulation. This mechanism of population update has some similarities with that
employed in other evolutionary techniques such as (1+ ) Evolution Strategy [30,
31] and the Breeder Genetic Algorithm [32].
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Fig. 1. The phenotype that is a digital circuit is encoded within a genotype by an
array of logic cells.
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To encode a digital electronic circuit into a genotype, a genotype-phenotype
mapping is defined. This is done via rectangular array of cells each of which is
an atomic two-input logic gate or a multiplexer. Thus the genotype is a linear
string of integers and it consists of two different types of genes that are respon-
sible for the functionality and the routing of the evolved array. The genotype
is characterised by four parameters of the array of cells: the number of allowed
logic functions, the number of rows, the number of columns, and levels-back. The
first parameter defines the functionality of logic cells, while the latter three pa-
rameters determine the layout and routing of the array. Note that the number
of inputs and outputs of the array are specified by the objective function. The
genotype-phenotype mapping is defined using an array of n x m three-input cells
with ny inputs and no outputs, and together with the genotype representation
is shown in Figure 1. The array is a composition of cells each of which can be
any allowed two-input logic gate or alternatively a multiplexer.



The internal connectivity of the array is defined by the connections between
the array cells. The inputs of each cell are only allowed to be inputs of the array
or outputs of the cells with lower column numbers. The internal connectivity
is also dependent on the levels-back parameter that defines the array inputs
and cells to which a cell or an array output can be connected in the following
manner. Consider that the levels-back parameter is equal to L. Then cells can be
connected to cells from L preceding columns. If the number of preceding columns
of a cell is less than L then the cell can also be connected to the inputs of the
array. In this paper the array cells and outputs are maximally connectable since
the number of rows is set to one and the levels-back is equal to the number of
columns.

The gate array output connectivity is defined in a similar way. The output
connections of the array are allowed to be outputs of cells or array inputs. Again,
this is dependent on the neighbourhood defined by the levels-back parameter.

The genotype is a string of integers that encode either logic functions or
connections. The logic functions are represented by letters associated with the
allowed cell functionality. The connections are defined by indexes that are as-
signed to all inputs and cells of the array. Each array input X}, is labelled with
k—1for 1 <k < ny, and each cell ¢;; is labelled with an integer given by
nr+n(j—1)+i—1for 1 <i<mand1<j<m. Thus the genotype consists of
groups of four integers that encode the cells of the array, followed by a sequence
of integers that represent the indexes of the cells connected to the outputs of the
array. The first three values of each group are the indexes of the cells to which
the inputs of the encoded cell are connected. If the cell represents a two-input
logic function, then the third connection is redundant. This type of redundancy
is referred to as input redundancy. The last integer of the group represents the
logic function of the cell. Cells may also not have their outputs connected in
the operating circuit. This is another form of redundancy called cell redundancy.
The redundancy in the genotype related to the function of the array may also be
functional redundancy. This is the case in which the number of cells of a digital
circuit is higher than the optimal number needed to implement this circuit.

3 Evolution of a Three-bit Multiplier

To study the role of landscape neutrality in the evolutionary design of digital
circuits, a three-bit multiplier is evolved using binary multiplexers. The three-bit
multiplier is a good candidate to be used in this study for the following reasons:
firstly, the circuit is difficult to evolve, and secondly, it is a fundamental building
block of many digital devices. In addition it has been shown that the fitness
landscapes associated with the evolution of the three-bit multiplier are similar to
the landscapes of other arithmetic functions in terms of landscape neutrality [17].
The binary multiplexers are defined by the universal-logic function

fla,b,c)=a-c+b-c (1)

taken four times with inputs a and b inverted in various ways (gates 16 — 19
as labelled in [17]). The reason for using only multiplexers is to simplify the



evolutionary model by allowing only the existence of cell redundancy and func-
tional redundancy. 100 evolutionary runs of 10 million generations were carried
out. The array had 1 x 24 cells and the levels-back was set to 24. 27 perfect
solutions were found, three of which were circuits that required 21 gates. For
each evolutionary run the best fitness of the population and the corresponding
genotype were recorded for the generations in which improvements of the fitness
have been attained. In addition, the number of neutral changes between every
two fitness improvements was evaluated. Thus the number of neutral mutations
for each fitness improvement were calculated cumulatively. The aim is to attain
understanding of the process of evolving digital circuits, particularly the three-
bit multiplier. The results for a typical evolutionary run in which a three-bit
multiplier of 21 gates was obtained are given in Figure 2. The figure represents
(a) the best fitness, and (b) the cumulative number of neutral mutations in the
(1) functionality, (2) internal connectivity, and (3) output connectivity configu-
rations. The circuit was attained at generation 4,970,271, and its schematic is
given in Figure 3. The circuit is efficient in term of gate usage, since it consists of
21 logic gates that is 20% less than the number of gates of the best conventional
design. The logic gates used in the figure are multiplexers (given with rectan-
gles), AND, OR, and XOR. The two-input gates in the depicted multiplier came
about because some multiplexers had two inputs connected together.
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Fig. 2. The evolution of a three-bit multiplier: (a) the best fitness, and (b) the cumula-
tive number of neutral mutations in the (1) functionality, (2) internal connectivity, and
(3) output connectivity configurations, recorded at each fitness increase (74 in total).

Figure 2a shows that the best fitness is marked by periods of a sharp fitness
increase followed by periods of stasis or a slight fitness increase. It is hypoth-
esised that each period of stasis is a hidden process of search performed by
neutral walks so that the population could traverse wide search space areas with
lower or equal fitness. To investigate this phenomenon the number of all neutral
mutations at each generation for functionality, input connectivity and output
connectivity configurations are also evaluated cumulatively (Figures 2b). It is



G
0

all
g i
- IS R
ol

=) > l

P 0
U9 0

> vg

Fig. 3. The schematic of the evolved three-bit multiplier. The most significant bits are
inputs Xo and X3, and output Yo.

shown that the cumulative number of neutral mutations increases with a lower
than linear rate at each generation, and the evolutionary process is constantly
accompanied by neutral mutations. The plots also show that neutral changes
are most likely to appear in the input connectivity configurations, less in the
functionality configurations, and least in the output connectivity configurations.

4 Landscape Neutrality

The landscapes of the evolved three-bit multiplier result from the Cartesian
product of three configuration spaces [7] defined on the functionality and con-
nectivity alphabets that in this particular case have sizes [, = 4 and lg = 24,
respectively. The former alphabet is defined by the number of allowed logic func-
tions while the latter is defined by the levels-back parameter. The structure of
the three subspaces - functionality, internal connectivity, and output connectiv-
ity - did not differ significantly from the structure of the landscapes associated
with other electronic circuits, such as two-bit and three-bit multipliers evolved
for various values of the functionality and connectivity parameters [17]. They
are characterised with neutrality that prevails over the landscape smoothness
and ruggedness in the internal connectivity subspace. This was not valid for
the functionality and output connectivity landscapes. It was also found that the
neutrality of the output connectivity landscapes was more strongly dominated
by the landscape ruggedness than that found in the functionality landscapes.
These findings were revealed by studying the information characteristics [33] of
time series obtained via random walks with respect the three subspaces.

An interesting issue related to the role of neutrality in the evolution of digital
circuits is the relation between the size and the height of the landscape plateaus.
It is believed that the neutral walks are longer at a lower altitude fitness level.
Thus it can be surmised that the length of the neutral walks will decrease as the
best fitness increases. The reason is that the genotype redundancy is expected to
decrease in an efficient evolutionary search. This can be illustrated by measur-
ing the length of the neutral walks that start from those genotypes recorded at



- 1) e
i X 8
. - @ o
08 f%}ﬁ 1
o 1z
.
A <
o6 | ° ¥ k! = i
=y S E3
=] ® e s s
g . . - .
o h A S ]
T ew B2t ‘
R R i;
vse e -
02t ® e
& = ase .« o e
-
oL ‘ ‘ ‘ " " -
1 10 100 1000 10000 100000 1e+06
Generation

Fig. 4. The length of neutral walks on (1) functionality, (2) internal connectivity, and
(3) output connectivity landscapes scaled in the interval [0, 1].

every fitness increase in the evolutionary run shown in Figure 2. The algorithm
of neutral walks as given in [18] is defined as follows: start from a configura-
tion, generate all neighbours, select a neutral one at random that results in an
increase in the distance from the starting point and continue moving until the
distance cannot be further increased. 1,000 neutral walks per configuration were
performed. The means and the standard deviations of the lengths scaled in the
interval [0, 1] are given in Figure 4. The scaling was done by dividing the length
of each neutral walk by the length of the corresponding configuration. Note that
the functionality, internal connectivity, and output connectivity configurations
consist of 24, 72, and 6 genes, respectively. The figure confirms the findings of the
information analysis of these landscapes. It is also shown that the length of the
neutral walks decrease during the evolution with a higher than linear rate. An
interesting result related to the evolved three-bit multiplier is that the length of
the neutral walks on internal connectivity subspaces that start from the obtained
functionally correct digital circuit exceeds the expected length regarding the cell
redundancy. For this genotype, the expected length of the internal connectivity
configuration is 9 since the number of redundant cells is 3 (9 redundant genes).
However, the measured lengths were about 15. Therefore, there exist functional
redundancy in the evolved internal connectivity configuration. This implies that
some of the multiplexers of the circuit might be replaced with two-input logic
gates this is also revealed by Figure 3.

5 Neutral Mutations and Search

The results represented thus far showed that digital circuit evolution is accom-
panied by a random genetic drift caused by neutral mutations. These are more
likely to appear during the search on the functionality and input connectivity



landscapes since these subspaces are characterised with neutral networks that
originate from the cell redundancy. The amount of neutral changes in the output
connectivity configuration is much lower than in the functionality and internal
connectivity ones. Note that the neutrality of the output connectivity subspace
is determined only by the functional redundancy. It was also revealed that the
cumulative number of neutral changes in the functionality and internal connec-
tivity configurations increases during the evolutionary run with a lower than
linear rate. This is to be expected since the fitness increase during the evolu-
tionary run reduces the redundancy in general. This process in itself affects the
landscape neutrality so that the size of neutral areas decreases with a higher
than linear rate. The decrease of the landscape neutrality was revealed by mea-
suring the length of the neutral walks that start from those genotypes recorded
at every fitness increase (section 4). The interesting question here is how the
increase of the cumulative number of neutral changes relates to the decrease of
the landscape neutrality during the evolution. This is answered by Figure 5 that
shows the derivatives (absolute values) of the plots of (1) the cumulative number
of neutral changes (Figure 2b), and (2) the length of neutral walks (Figure 4).
The derivatives are calculated for each generation characterised with a fitness
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Fig. 5. Derivatives of the plots depicted in (1) Figure 2b and (2) Figure 4 calculated at
each generation characterised with a fitness increase (74 in total): (left) functionality,
(centre) internal connectivity, and (right) output connectivity configurations.

increase. The figure shows that the number of neutral changes decreases more
slowly than the length of the neutral walks. This also holds for the output con-
nectivity subspaces, although it is difficult to see this in the figure. The findings
suggest that in the beginning of the run, neutral changes occur as a consequence
of the high redundancy in the genotype. This however does not appear as a
reason for the neutral changes at end of the run, since the redundancy becomes
low. It appears that the selective mechanisms promote the neutral changes since
this is the only feasible way for the population to explore the search space. This
is also indicated in the plot in Figure 6. The plot shows the Hamming distance



of every two consecutive genotypes each of which resulted in a fitness increase
for the evolutionary run studied in section 3. The Hamming distance increases
with the length of the periods of stasis that is another indication of the genetic
drift caused by neutral changes. For instance, the Hamming distance of the last
two genotypes obtained at generations 1,771,234 and 4,970, 271 is equal to 75,
although the difference between the fitness values of these genotypes is approx-
imately 0.0027 (this is exactly a difference of one bit of the corresponding truth
tables). This is a significant difference when considering that the length of the
genotype is 102. The drift was attained after 281, 163 neutral mutations. Hence
neutral evolution is vitally important for the search especially when close to the
global maximum where the likelihood of deleterious mutations to occur is high.

102

Hamming distance

Pair of genotypes

Fig. 6. The Hamming distance of two consecutive genotypes each of which represents
a fitness increase in the evolutionary run shown in Figure 2.

The existence of neutrality helps the evolutionary design of digital circuits.
Indeed if digital circuit evolution is implemented without neutral mutations, the
result is not encouraging. This is illustrated by Figure 7. The figure shows the
best fitness attained in the evolution of a three-bit multiplier in the experiment
of 100 runs with “allowed” neutral mutations described in section 3, and the
best fitness attained for 100 runs with “forbidden” neutral mutations. To allow
neutral mutations, the algorithm was set up to choose a new parent even if
the new fittest members of the population have fitness values that are equal to
the fitness of the previous parent. Alternatively, to forbid neutral mutations,
the algorithm was set up to change the parent only if a fitter member of the
population occurs. The runs in which neutral mutations were allowed generated
27 perfect solutions: 5 with 24, 10 with 23, 9 with 22, and 3 with 21 logic gates.
Although, the attained best fitness in the experiment with forbidden neutral
mutations is fairly high, no perfect solution was evolved. This again supports
the importance of landscape neutrality for the success of the evolutionary search.
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Fig. 7. The best fitness values of 2 x 100 evolutionary runs of 10 million generations
with allowed (diamonds) and forbidden (crosses) neutral mutations.

The neutral evolution allows the population to avoid being trapped in a local
optimum and thus to escape, and furthermore to cross wide landscape areas with
lower fitness.

6 Summary

The importance of landscape neutrality for the evolution of digital circuits, par-
ticularly the three-bit multiplier, was revealed in a comparison between the
amount of neutral changes and the size of the neutral areas during a successful
evolutionary run. It was shown that the evolutionary process is accompanied
by neutral mutations, the number of which, decreases with a lower rate when
comparing with the decrease of the size of the neutral areas (Figure 5). Con-
sequently, the neutral changes were employed in the evolutionary search (see
also Figure 6). The landscape neutrality appeared to be vitally important for
the evolutionary design of digital circuits in that it firstly prevents the evolved
sub-circuit from deleterious mutations, and secondly, it allows the evolutionary
search to avoid entrapment at local optima. This was empirically demonstrated
in section 5 where it was shown that the search with allowed neutral changes is
better.

Further research should be carried out to answer the following questions. How
exactly does the circuit change in every period of stasis? How does evolution
preserve the attained circuit modules? This remains for the future.
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