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ABSTRACT
We propose a new form of Cartesian Genetic Programming
(CGP) that develops into a computational network capable
of learning. The developed network architecture is inspired
by the brain. When the genetically encoded programs are
run, a networks develops consisting of neurons, dendrites,
axons, and synapses which can grow, change or die. We
have tested this approach on the task of learning how to
play checkers. The novelty of the research lies mainly in
two aspects: Firstly, chromosomes are evolved that encode
programs rather than the network directly and when these
programs are executed they build networks which appear to
be capable of learning and improving their performance over
time solely through interaction with the environment. Sec-
ondly, we show that we can obtain learning programs much
quicker through co-evolution in comparison to the evolution
of agents against a minimax based checkers program. Also,
co-evolved agents show significantly increased learning capa-
bilities compared to those that were evolved to play against
a minimax-based opponent.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming—Program synthesis; I.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning—Connectionism and neural nets

General Terms
Algorithms, Design, Performance

Keywords
Cartesian Genetic Programming, Computational Develop-
ment, Co-evolution, Artificial Neural Networks, Checkers

1. INTRODUCTION
In our view the process of biological development under-

pins learning. Since in biology all learning occurs during
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development, and DNA does not in itself encode learned in-
formation. This raises the question: How is a capability for
learning encoded at a genetic level? We are also interested
in finding out how important for learning, is the interaction
between two systems developing in response to each other?
In this paper, we evolve genotypes that encode programs
that when executed gives rise to a neural network that plays
checkers. In particular, we demonstrate how important it is
to co-evolve and co-develop two agents, instead of evolving
and developing a single agent for learning.

Following Khan et al. the genotype we evolve is a set
of computational functions that are inspired by various as-
pects of biological neurons [10]. Each agent (player) has a
genotype that grows a computational neural structure (phe-
notype). The initial genotype that gives rise to the dynamic
neural structure is obtained through evolution. As the num-
ber of evolutionary generations increases the genotypes de-
velop structure that allow the players to play checkers in-
creasingly well.

Our method employs very few, if any, of the traditional no-
tions that are used in the field of Artificial Neural Networks.
Unlike traditional ANNs we do not evolve or directly adjust
set of numbers that defines a network. We run evolved pro-
grams that can adjust the network indefinitely. This allows
our network to learn while it develops during its lifetime.
The network begins as small randomly defined networks of
neurons with dendrites and axosynapses. The job of evo-
lution is to come up with genotypes that encode programs
that when executed develop into mature neural structures
that learn through environmental interaction and continued
development.

ANNs can only solve a specific problem as they model
learning through synaptic weights. Whereas memory and
learning in brains is caused by many other mechanisms.
Synaptic weights are only responsible for extremely short
term memory. Also if very complex tasks are required to be
solved with say, billions of weights, current traditional ap-
proaches won’t scale. In principle ours will as the network
complexity is not related to the complexity of the evolved
programs. So in a nutshell we choose to model at this partic-
ular level of abstraction because we feel it has the plasticity
we need and will scale better. What we do is inspired by
biology. We are not trying to model biology. We expect the
additional model complexity to pay off when we allow it to
develop in interaction with the environment over long time
scales and on different problems simultaneously.

There are a number of techniques in which an agent can
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be trained to learn. One is to train the agent against a
well-trained agent whose capabilities do not change at run-
time, i.e evolve and develop the system against a minimax-
based checkers software program. The second method is to
co-evolve two agents that have almost equal learning capa-
bilities, so their level of play improves in response to each
other.

In the first case agents develop during the course of a se-
ries of games playing against a fixed level minimax program
that plays checkers. At the end of the evolutionary run we
test the well evolved agent against a series of lesser evolved
ancestor agents to see how the learning capabilities have in-
creased over evolutionary time. To do this we allowed well
evolved agents to play a number of games against its op-
ponent from various generation, and checked if the level of
play is improved. From the results shown later it is clearly
evident that the learning capability of the agents improves
over evolutionary time. In second case we have co-evolved
agents against each other allowing both agents to develop
over five game series. We have evolved them for one thou-
sand (1000) generations and then tested the highly evolved
agents against less evolved agents. Once again our results
show that on average the highly evolved agents perform
much better than the lesser evolved agents.

In order to test whether co-evolution or evolution pro-
duced better learning agents, we have tested the agents from
various generation of co-evolution and evolution. From the
results it is evident that co-evolution improves the learning
capability of the agents much more than that of the evolved
agents.

2. CARTESIAN GENETIC PROGRAMMING
(CGP)

CGP is a well established and effective form of Genetic
Programming. It represents programs by directed acyclic
graphs [13]. The genotype is a fixed length list of integers,
which encode the function of nodes and the connections of
a directed graph. Nodes can take their inputs from either
the output of any previous node or from a program input
(terminal). The phenotype is obtained by following the con-
nected nodes from the program outputs to the inputs. For
our checkers work, we have used function nodes that are
variants of binary if-statements known as 2 to 1 multiplex-
ers [12] as shown in figure 1.

The four functions in figure 1 are the possible input com-
binations of a three input (two inputs and a control) multi-
plexer, when inputs are either inverted or not. Multiplexers
can be considered as atomic in nature as they can be used
to represent any logic function [12].

Figure 1 shows the genotype and the corresponding phe-
notype obtained connecting the nodes as specified in the
genotype. The Figure also shows the inputs and outputs to
the CGP. Output is taken from the nodes as specified in the
genotype (6, 8, 4). In our case we have not specified the out-
put in the genotype and have used a fixed pseudo random
list of numbers to specify where the output should be taken
from.

In CGP an evolutionary strategy of the form 1 + λ, with
λ set to 4 is often used [12]. The parent, or elite, is preserved
unaltered, whilst the offspring are generated by mutation of
the parent. If two or more chromosomes achieve the highest
fitness then newest (genetically) is always chosen.

Figure 1: Structure of CGP chromosome. Showing
a genotype for a 4 input, 3 output function and its
decoded phenotype. Inputs and outputs can be ei-
ther simple integers or an array of integers. Note
nodes and genes in grey are unused and small open
circles on inputs indicate inversion. The function
gene in genotype is underlined. All the inputs and
outputs of multiplexers are labeled. Labels on the
inputs of the multiplexer shows where are they con-
nected (i.e. they are addresses). Input to CGP is
applied through the input lines as shown in figure.
The number of inputs (four in this case) and out-
puts (three in this case) to the CGP is defined by
the user, which is different from the number of in-
puts per node (three in this case i.e. a, b and c.)

3. CO-EVOLUTIONARY COMPUTATION
Co-evolutionary algorithms are generally used for artifi-

cial life, optimization, game learning and machine learning
problems. Co-evolutionary computation is largely used in
the competitive environment. These interactions can be ei-
ther between individuals competing in a game context [19,
21] or between different populations competing in preda-
tor/prey type relationships [7, 17, 21].

In competitive co-evolution an individual’s fitness is eval-
uated based on its performance against the opponent in the
population. Fitness shows the relative strengths of solutions
not the absolute solutions, thus causing the opponent fitness
to decrease relatively. These competing solutions will create
an ”Arms Race” of increasingly better solutions [3, 21]. The
feedback mechanisms between individuals based on their se-
lection produces a strong force toward increased complexity
[18].

Nolfi and Floreano co-evolved two competing populations
of predator and prey robots in order to emphasize how life-
time learning allows evolving individuals to achieve gener-
ality, i.e. the ability to produce effective behavior in a va-
riety of different circumstances [15]. What is interesting
about this experimental situation is that, since both popu-
lations change across generations, predators and prey face
ever-changing and potentially progressively more complex
challenges. They also observed that, in this situation, evolu-
tion alone displays severe limitations and progressively more
solutions can be developed only by allowing evolving individ-
uals to adapt on the fly through a form of lifetime learning.

In recent years, co-evolutionary techniques have been ap-
plied to several games, including Othello [14], Go [11], Chess
[9], and Checkers [24] [5].

708



4. RELATED DEVELOPMENT MODELS
Nolfi et al presented a model in which the genotype-phenotype

mapping (i.e. ontogeny) takes place during the individual’s
lifetime and is influenced both by the genotype and by the
external environment [16]. The 2D neural networks adapt
during their lifetime to different environments. The neurons
had no dendrites only upward growing axons. Connections
between neurons happens when axons arrive in the vicinity
of another neuron. The activity of a neuron affects whether
its axon grows or not, in this way they linked lifetime ’elec-
trical’ activity with morphological structure

Cangelosi proposed a related neural development model,
which starts with a single cell undergoing a process of cell
division and migration [1]. This continues until a collection
of neurons arranged in 2D space is developed. These neurons
grow their axons to produce connection among each other
to develop a neural network. The rules for cell division and
migration is specified in genotype, for a related approach see
[2, 6].

Rust and Adams devised a developmental model coupled
with a genetic algorithm to evolve parameters that grow
into artificial neurons with biologically-realistic morpholo-
gies [22]. They also investigated activity dependent mech-
anisms [23] so that neural activity would influence growing
morphologies.

Jakobi created an artificial genomic regulatory network
[8]. He used proteins to define neurons with excitatory or
inhibitory dendrites. The individual cell divides and moves
due to protein interactions with an artificial genome, causing
a complete multicellular network to develop. After differen-
tiation each cell grows dendrites following chemical sensitive
growth cones to form connections between cells. This devel-
ops a complete conventional recurrent ANN, which is used
to control a simulated Khepera robot for obstacle avoidance
and corridor following.

Federici presented an indirect encoding scheme for devel-
opment of a neuro-controller [4]. The adaptive rules used
were based on the correlation between post-synaptic electric
activity and the local concentration of synaptic activity and
refractory chemicals. Federici used two steps to produced
the neuro-controllers: A growth program (implemented as a
simple recurrent neural network) in a genotype to develop
the whole multi-cellular network in the form of a phenotype
and a translation step where cells are interpreted as spiking
neurons.

Roggen et al. devised a hardware cellular model of devel-
opmental spiking ANNs [20]. Each cell can hold one of two
types of fixed input weight neurons, excitatory or inhibitory
each with one of 5 fixed possible connection arrangements
to neighbouring neurons. In addition each neuron has a
fixed weight external connection. The neuron integrates the
weighted input signals and when it exceeds a certain mem-
brane threshold it fires. This is followed by a short refractory
period. They have a leakage which decrements membrane
potentials over time.

In almost all previous work the internal functions of neu-
rons were either fixed or only parameters were evolved. Con-
nections between neurons are simple wires instead of com-
plicated synaptic process. Development stops once the eval-
uation is started so there is no development in real time.
The model we propose is inspired by the characteristics of
real neurons.

5. KEY FEATURES AND BIOLOGICAL
BASIS FOR THE MODEL

Features of biological neural systems that we think are
important to include in our model(Cartesian Genetic Pro-
gramming Computational Network (CGPCN)) are synap-
tic transmission, and synaptic and developmental plastic-
ity. Signalling between biological neurons happens largely
through synaptic transmission, where an action potential in
the pre-synaptic neuron triggers a short lasting response in
the post-synaptic neuron [25]. In our model signals received
by a neuron through its dendrites are processed and a de-
cision is taken whether to fire an action potential or not.
Table 1 lists all the properties of biological systems that are
incorporated into our model. Table 1 also shows the pres-
ence and absence of these properties in existing ANNs and
neural development models.

Neurons in biological systems are in constant state of
change, their internal processes and morphology change all
the time based on the environmental signals. The develop-
ment process of the brain is strongly affected by external
environmental signals. This phenomenon is called Develop-
mental Plasticity. Developmental plasticity usually occurs
in the form of synaptic pruning [26]. This process elimi-
nates weaker synaptic contacts, but preserves and strength-
ens stronger connections. More common experiences, which
generate similar sensory inputs, determine which connec-
tions to keep and which to prune. More frequently activated
connections are preserved. Neuronal death occurs through
the process of apoptosis, in which inactive neurons become
damaged and die. This plasticity enables the brain to adapt
to its environment.

A form of developmental plasticity is incorporated in our
model, branches can be pruned, and new branches can be
formed. This process is under the control of a ‘life cycle’
chromosome (described in detail in section 6) which deter-
mines whether new branches should be produced or branches
need to be pruned. Every time a branch is active, a life cycle
program is run to establish whether the branch should be
removed or should continue to take part in processing, or
whether a new daughter branch should be introduced into
the network.

Starting from a randomly connected network, we allow
branches to navigate (Move from one grid square to other,
make new connections) in the environment, according to the
evolutionary rules. An initial random connectivity pattern
is used to avoid evolution spending extra time in finding
connections in the early phase of neural development.

Changes in the dendrite branch weight are analogous to
the amplifications of a signal along the dendrite branch,
whereas changes in the axon branch (or axo-synaptic) weight
are analogous to changes at the pre-synaptic level and post-
synaptic level (at synapse). Inclusion of a soma weight is
justified by the observation that a fixed stimulus generates
different responses in different neurones.

Through the introduction of a ’life cycle’ chromosome,
we have also incorporated developmental plasticity in our
model. The branches can self-prune and can produce new
branches to evolve an optimized network that depends on
the complexity of the problem [26].
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Name ANNs Neural Biology CGPCN
development

Neuron Node with Node with Soma with Soma with
Structure connections axons and dendrites, axon dendrites, axon

dendrites and dendrite and dendrite
branches branches

Interaction of branches No No Yes Yes
Neural function Yes Yes Yes Yes

Resistance No Yes/No Yes Yes
Health No No Yes Yes

Neural Activity No No Yes Yes
Synaptic Communication No No Yes Yes

Arrangement of Fixed Fixed Arranged in space Arranged in
Neurons (Dynamic Artificial space

Morphology) (Dynamic
Morphology)

Spiking Yes, but Yes, but Yes Yes
(Information not all not all
processing)

Synaptic Plasticity Yes No Yes Yes
Developmental Plasticity Yes No Yes Yes

Arbitrary I/O No No Yes Yes
Learning Rule Specified Specified Unspecified Unspecified

Activity Dependent Morphology No Some Yes Yes

Table 1: List of all the properties of biological systems that are incorporated into CGPCN or are present in
ANNs and neural development models.

6. THE CGP COMPUTATIONAL NETWORK
(CGPCN)

This section describes in detail the structure of the CG-
PCN, along with the rules and evolutionary strategy used
to run the system.

In the CGPCN neurons are placed randomly in a two di-
mensional spatial grid so that they are only aware of their
spatial neighbours (as shown in figure 2). Each neuron is
initially allocated a random number of dendrites, dendrite
branches, one axon and a random number of axon branches.
Neurons receive information through dendrite branches, and
transfer information through axon branches to neighbouring
neurons. The dynamics of the network also changes, since
branches may grow or shrink and move from one CGPCN
grid point to another. They can produce new branches and
can disappear, and neurons may die or produce new neu-
rons. Axon branches transfer information only to dendrite
branches in their proximity. Electrical potential is used for
internal processing of neurons and communication between
neurons, and we represent it as an integer.

Health, Resistance, Weight and Statefactor
Four integer variables are incorporated into the CGPCN,

representing either fundamental properties of the neurons
(health, resistance, weight) or as an aid to computational
efficiency (statefactor). The values of these variables are
adjusted by the CGP programs. The health variable is used
to govern replication and/or death of dendrites and con-
nections. The resistance variable controls growth and/or
shrinkage of dendrites and axons. The weight is used in cal-
culating the potentials in the network. Each soma has only
two variables: health and weight. The statefactor is used
as a parameter to reduce computational burden, by keeping

some of the neurons and branches inactive for a number of
cycles. Only when the statefactor is zero are the neurons
and branches considered to be active and their correspond-
ing program is run. The value of the statefactor is affected
indirectly by CGP programs. The bio-inspiration for the
statefactor is the fact that not all neurons and/or dendrites
branches in the brain are actively involved in each process.

6.1 Inputs, Outputs and Information
Processing in the Network

The external inputs (encoding a simulated potential) are
applied to the CGPCN and presented to axo-synaptic elec-
trical processing chromosomal branches as shown in figure
3. These are distributed in the network in a similar way to
the axon branches of neurons. After this the program en-
coded in the axo-synaptic electrical branch chromosome is
executed, and the resulting signal is transferred to its neigh-
bouring active dendrite branches. Similarly we have outputs
which read the signal from the CGPCN through dendrite
branches. These branches are updated by the axo-synaptic
chromosomes of neurons in the same way as other dendrite
branches and after five cycles the potentials produced are
averaged and this value is used as the external output.

Information processing in the network starts by selecting
the list of active neurons in the network and processing them
in a random sequence. Each neuron take the signal from the
dendrites by running the electrical processing in dendrites.
The signals from dendrites are averaged and applied to the
soma program along with the soma potential. The soma
program is run to get the final value of soma potential, which
decides whether a neuron should fire an action potential or
not. If the soma fires, an action potential is transferred
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External output

External Input

Figure 2: On the top left a grid is shown contain-
ing a single neuron. The rest of the figure is an
exploded view of the neuron is given. The neu-
ron consists of seven evolved computational func-
tions. Three are ’electrical’ and process a simulated
potential in the dendrite (D), soma (S) and axo-
synapse branch (AS). Three more are developmen-
tal in nature and are responsible for the ’life-cycle’
of neural components (shown in grey). They decide
whether dendrite branches (DBL), soma (SL) and
axo-synaptic branches (ASL) should die, change,
or replicate. The remaining evolved computa-
tional function (WP) adjusts synaptic and dendritic
weights and is used to decide the transfer of po-
tential from a firing neuron (dashed line emanating
from soma) to a neighbouring neuron

to other neurons through axo-synaptic branches. The same
process is repeated in all neurons. A description of the seven
chromosomes is given in the next section.

6.2 CGP Model of Neuron
In our model neural functionality is divided into three

major categories: electrical processing, life cycle and weight
processing. These categories are described in detail below.

Electrical Processing
The electrical processing part is responsible for signal pro-

cessing inside neurons and communication between neurons.
It consists of dendrite branch (D), soma (S), and axo-synaptic
(AS) branch electrical chromosomes (as shown in figure 2).

D handles the interaction of dendrite branches belonging
to a dendrite. It takes active dendrite branch potentials and
soma potential as input and the updates their values. The
Statefactor is decreased if the update in potential is large
and vice versa. If a branch is active its life cycle program
is run (DBL), otherwise it continues processing the other
dendrites.

S, determines the final value of soma potential after receiv-
ing signals from all the dendrites. The processed potential
of the soma is then compared with the threshold potential
of the soma, and a decision is made whether to fire an action
potential or not. If it fires, it is kept inactive (refractory pe-
riod) for a few cycles by changing its statefactor, the soma
life cycle chromosome (SL) is run, and the firing potential is

S1

S2

S3

S4

S5

Key
Dendrite

Axon

Dendrite Brancn

Axon Branch

Input branch

Output Branch

Dendrite Branch Terminal

Axon Branch Terminal

Soma

Input Branch Terminal

Output Branch Terminal

S

AS

AS AS
AS

AS
AS

Axosynapse Chromosome

Figure 3: A schematic illustration of a 3×4 CGPCN
grid. The grid contains five neurons, each neuron
has a number of dendrites with dendrite branches,
and an axon with axon branches. Inputs are ap-
plied at five random locations in the grid using in-
put axo-synapse branches by running axo-synaptic
CGP programs. Outputs are taken from five ran-
dom locations through output dendrite branches.
The figure shows the exact locations of neurons and
branches as used in most of the experiments as an
initial network. Each gird square represents one lo-
cation, branches and soma are shown spaced for clar-
ity. Each branch location is represented by where
its terminal is located. Every location can have
as many neurons and branches as the network pro-
duces, there is no imposed upper limit.

sent to the other neurons by running the program encoded
in axo-synapse electrical chromosome (AS). The threshold
potential of the soma is adjusted to a new value (maximum)
if the soma fires.

The potential from the soma is transferred to other neu-
rons through axon branches. The AS program updates neigh-
bouring dendrite branch potentials and the axo-synaptic po-
tential. The statefactor of the axo-synaptic branch is also
updated. If the axo-synaptic branch is active its life cycle
program (ASL) is executed.

After this the weight processing chromosome (WP)
is run which updates the Weights of branches in the same
grid square. The processed axo-synaptic potential is as-
signed to the dendrite branch having the largest updated
Weight.

Life Cycle of Neuron
This part is responsible for replication or death of neu-

rons and neurite (dendrites and axon) branches and also the
growth and migration of neurite branches. It consists of
three life cycle chromosomes responsible for the neuron and
neurites development.

The dendrite (DBL) and axo-synaptic (ASL) branch chro-
mosomes update Resistance and Health of the branch. Change
in Resistance of a neurite branch is used to decide whether
it will grow, shrink, or stay at its current location. The
updated value of neurite branch Health decides whether to
produce offspring, to die, or remain as it was with an up-
dated Health value. If the updated Health is above a certain
threshold it is allowed to produce offspring and if below cer-
tain threshold, it is removed from the neurite. Producing
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offspring results in a new branch at the same CGPCN grid
point connected to the same neurite (axon or dendrite).

The soma life cycle (SL) chromosome produces updated
values of Health and Weight of the soma as output. The
updated value of the soma Health decides whether the soma
should produce offspring, should die or continue as it is. If
the updated Health is above certain threshold it is allowed
to produce offspring and if below a certain threshold it is
removed from the network along with its neurites. If it pro-
duces offspring, then a new neuron is introduced into the
network with a random number of neurites at a different
random location. This neuron is placed at a pseudo-random
location.

7. EXPERIMENTAL SETUP
The experiment is organized such that an agent is pro-

vided with CGPCN as its computational network. It is al-
lowed to play five games against a minimax based checker
program (MCP) (in the non co-evolutionary case). The
initial population is five agents each starting with a small
randomly generated initial network and randomly generated
genotypes. In each subsequent game of the five, the agent
starts with a developed network from previous game. The
genotype corresponding to the agent with the highest aver-
age fitness at the end of five games is selected as the parent
for the new population. Four offspring formed by mutating
the parent are created. Any learning behaviour that is ac-
quired by an agent is obtained through the interaction and
repeated running of program encoded by the seven chromo-
somes within the game scenario.

The MCP always plays the first move. The updated board
is then applied to an agent’s CGPCN. The potentials repre-
senting the state of the board are applied to CGPCN using
the axo-synapse(AS) chromosome. The agent CGPCN is
run which decide about its move. The game continues until
it is stopped. It is stopped if either the CGPCN of an agent
or its opponent dies (i.e. all its neurons or neurites dies), or
if all its or opponent players are taken, or if the agent or its
opponent can not move anymore, or if the allotted number
of moves allowed for the game have been taken.

In the second set of experiments (co-evolution) both the
agents in a game develop. As both the agents start with
a random network, so both of them play random moves to
start with, but the level of play improves as the game pro-
gresses, because their network develops during the course
of the game. Each agent play five games while developing
using a particular genotype. Each population consists of
five genotypes and the agent on either side play against the
best genotype of the opponent from the previous generation.
The selection from generation to generation is based on how
much an agent improves during the course of five games.
We have devised the fitness function so that agents that
play better on later games in the five game series receive a
larger fitness score than the agents who play more poorly in
later games. This was designed so that agents which learn
during the series of five games are positively selected.

7.1 Inputs and outputs of the System
Input is in the form of board values, which is an array of

32 elements, with each representing a playable board square.
Each of the 32 inputs represents one of the following five
different values depending on what is on the square of the
board (represented by I). Zero means empty square. I =

AS

ASAS Axo-synapse Electrical CGP

AS

S1

S2

S3

S4

S5

Key
Dendrite

Axon

Dendrite Brancn

Axon Branch

Input branch

Dendrite Branch Terminal

Axon Branch Terminal

Soma

Input Branch Terminal

S

Figure 4: Interfacing CGPCN with Checker board.
Four board positions are interfaced with the CG-
PCN such that board positions are applied in pair
per square of CGPCN.

M = 232 − 1 means a king, (3/4)M means a piece, (1/2)M
an opposing piece and (1/4)M an opposing king.

The board inputs are applied in pairs to all the sixteen lo-
cations in the 4x4 CGPCN grid (i.e. two input axo-synapse
branches in every grid square, one axo-synapse branch for
each playable position) as the number of playable board po-
sitions are 32 as shown in figure 4. Figure 4 shows how
the CGPCN is interfaced with the game board, input axo-
synapse branches are allocated for each playable board posi-
tion. These inputs run programs encoded in the axo-synapse
electrical chromosome to provide input into CGPCN (i.e.
the axo-synapse CGP updates the potential of neighbouring
dendrite branches).

Input potentials of the two board positions and the neigh-
bouring dendrite branches are applied to the axo-synapse
chromosome. This chromosome produces the updated val-
ues of the dendrite branches in that particular CGPCN grid
square. In each CGPCN grid square there are two branches
for two board positions. The axo-synapse chromosome is
run for each square one by one, starting from square one
and finishing at sixteenth.

Output is in two forms, one of the outputs is used to select
the piece to move, and second is used to decide where that
piece should move. Each piece on the board has an output
dendrite branch in the CGPCN grid. All pieces are assigned
a unique ID, representing the CGPCN grid square where its
branch is located. So the twelve pieces of each player are
located at the first twelve grid squares. The player can only
see its pieces, while processing a move and vice versa. Also
the location of output dendrite branch does not change when
a piece is moved, the ID of the piece represent the branch
location not the piece location. Each of these branches has a
potential, which is updated during CGPCN processing. The
values of potentials determine the possibility of a piece to
move, the piece that has the highest potential will be the
one that is moved, however if any pieces are in a position
to jump then the piece with the highest potential of those
will move. Note that if the piece is a king and can jump
then, according to the rules of checkers, this takes priority.
If two pieces are kings, and each could jump, the king with
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the highest potential makes the jumping move. In addition,
there are also five output dendrite branches distributed at
random locations in the CGPCN grid. The average value of
these branch potentials determine the direction of movement
for the piece. Whenever a piece is removed its dendrite
branch is removed from the CGPCN grid.

7.2 CGP Computational Network (CGPCN)
Setup

The CGPCN is arranged in the following manner for this
experiment. Each player CGPCN has neurons and branches
located in a 4x4 grid. Initial number of neurons is 5. Max-
imum number of dendrites is 5. Maximum number of den-
drite and axon branches is 200. Maximum branch statefac-
tor is 7. Maximum soma statefactor is 3. Mutation rate
is 5%. Maximum number of nodes per chromosome is 200.
Maximum number of moves is 20 for each player.

7.3 Fitness Calculation
The fitness of each agent is calculated at the end of the

game using the following equation:
Fitness = A + 200(KP −KO) + 100(MP −MO) + NM ,

Where KP represents the number of kings, and MP repre-
sents number of men (normal pieces) of the player. KO and
MO represent the number of kings and men of the opposing
player. NM represents the total number of moves played.
A is 1000 for a win, and zero for a draw. To avoid spend-
ing much computational time assessing the abilities of poor
game playing agents we have chosen a maximum number
of moves. If this number of moves is reached before either
of the agents win the game, then A =0, and the number
of pieces and type of pieces decide the fitness value of the
agent.

8. RESULTS AND ANALYSIS
In two independent evolutionary runs we evolved agents

against MCP (evolution) and co-evolved agents for one thou-
sand (1000) generations. Then we took the best players from
generations 50 to 1000 (in 50 generation intervals) from the
co-evolutionary runs and let them play against the players
evolved against the MCP at the same generation. In this
way we could assess whether co-evolved players play bet-
ter at the same generation than the agents that played only
against the professional checker software (whose level of play
does not change during the course of game). We evaluate
their performance over the five game series by calculating
their average fitness using the fitness function that was used
in evolution. It is important to note that over the five game
series there is no evolution. We just begin with a small ran-
dom network and run the programs that were evolved at the
generation in question over the sequence of five games.

In Figure 5 we have plotted the average fitness of both
co-evolved and evolved player when playing each other in
a five game series for different generations. The co-evolved
player in almost every case beats the evolved player by a
large margin. We also repeated these experiments under
exactly the same conditions but where the players played a
ten game sequence of games. In Figure 6 we have plotted
the average fitness in the same way as before. Comparing
the two figures, reveals that the players that were obtained
through co-evolution perform even better than the five game
players against the same players evolved against the MCP.
This indicates that on average the players who play a ten
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Figure 5: Average fitness of Co-evolved player
against an evolved player for five games
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Figure 6: Average fitness of Co-evolved player
against an evolved player for ten games

game series play checkers at a higher level than the players
who play the five game series. It is important to note that
the evolved programs for both cases are the same, the only
difference is that in one case the programs play a series of
ten games and the other they played only five games. This
is strong evidence that the programs are actually learning
how to play checkers better through experience alone.

To asess how large these margins of victory were, we
plotted the cumulative fitness (where each plotted fitness
is added to the previous) for both the agents playing a five
game series and those playing a ten game series. This is
shown in Figure 7 and we have plotted what the cumulative
fitness would be if the co-evolved agents won every game
against the evolved agents with one piece advantage, two
pieces advantage (or one King), three pieces (a king and a
piece), eight pieces (4 kings) or ten pieces (5 kings) advan-
tage. From these graphs, it is evident that the co-evolved
agent continues to perform better and wins every game by
a margin greater than nine pieces on average. In fact, the
ten game co-evolved players almost always beat the MCP
evolved players by more than eight pieces (4 kings), whereas
the five game players win by more than five pieces, but less
than six. The figure also shows that the players with ten
games experience are much superior to the same starting
players but who have only five game experience.
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9. CONCLUSION
We have investigated the evolution and co-evolution of

checkers playing agents that are controlled by developmen-
tal programs. The agents evolve intelligent behaviour much
quicker through co-evolution rather than evolution against
a minimax based program. We also have shown that the co-
evolved agents improve with experience, and it appears that
we have successfully evolved CGP programs that encode an
ability to learn ’how to play’ checkers. In future, we are
planning to coevolve agents for longer, and allow more de-
velopmental experience through longer sequence of games,
after evolution is finished.
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