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Abstract. This paper presents a novel representation of Cartesian genetic 

programming (CGP) in which multiple networks are used in the classification 

of high resolution X-rays of the breast, known as mammograms. CGP networks 

are used in a number of different recombination strategies and results are 

presented for mammograms taken from the Lawrence Livermore National 

Laboratory database. 
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1   Introduction 

Breast cancer is one of the leading causes of death in women in the western world. In 

2005, some 40,000 new cases were detected in the UK alone and 10,300 women died 

in 2005 as a result of the disease [1] making breast cancer the most common cancer in 

women and the second most common cause of cancer death. The number of breast 

cancer related deaths has fallen since a screening programme was introduced in 1988. 

Nonetheless, it is predicted that one in seven woman will develop breast cancer at 

some point during their life [2].  

The detection of breast cancer in the early stages of the disease significantly 

increases the survival rate of patients. The main method for screening patients is the 

mammogram, a high resolution x-ray of the breast. The process of identifying and 

evaluating signs of cancer from mammograms is a very difficult and time-consuming 

task that requires skilled and experienced radiologists. This assessment is also, by its 

nature, highly subjective and susceptible to error, leading to cancers being missed and 

the patients misdiagnosed. To achieve a more accurate and reliable diagnosis, 

Computer Aided Detection (CAD) systems have been investigated which provide an 

objective, quantitative evaluation. CAD systems have the potential to help in two 

main ways: (i) the detection of suspicious areas in the mammogram that require 

further investigation and (ii) the classification of such areas as cancerous (malignant) 

or non-cancerous (benign).  

The aim of the work reported in this paper is to assess the potential benefit of a 

new representation of using evolutionary algorithm in the classification of 

mammograms as part of a CAD system and determine whether further development 



of such algorithms will lead to a more confident diagnosis. The implementation of a 

full CAD system is a huge undertaking and not viable or necessary for the evaluation 

of the algorithms proposed. Therefore, rather than develop a complete CAD system 

that acquires, preprocesses and segments appropriate sections of the mammogram, 

this investigation will rely on prior knowledge by using previously acquired and 

processed images of known pathology. Thus, only small sub-images taken from 

previously diagnosed mammograms are used where the nature and location of the 

suspicious regions are known and have been documented as such by clinical 

personnel. 

The problem presented to our algorithm reduces to one of deciding if the 

suspicious area is an indication of cancer (malignant) or harmless (benign). Two 

powerful indicators of cancer that are commonly used in evaluating mammograms are 

known as masses and microcalcifications. Masses are the larger of the two indicators 

and can be either benign or malignant. Characteristics such as the border and density 

of the mass, which is greater for malignant examples, can be used for classification. 

Traditionally, masses are more difficult to classify than microcalcifications. 

Microcalcifications are essentially small calcium deposits which occur as the result of 

secretions from ductal structures that have thickened and dried.  They can have a great 

variety of mostly benign causes, but might also be an indication for malignancy. They 

are fairly common on mammograms and their appearance increases with age, so that 

they can be found in 8% of mammograms of women in their late 20s and in 86% of 

mammograms of woman in their late 70s [2]. Microcalcifications that indicate 

malignancy are usually less than 0.5mm in size and often grouped into clusters of five 

or more. Any calcification larger than 1mm is almost always benign [2]. 

Features that have previously been used to distinguish benign and malignant 

microcalcifications include their shape, density, distribution and definition. Not only 

are these characteristics useful for a radiologist attempting to classify a mammogram, 

but they have been used extensively in feature extraction for established image 

processing techniques.  

Although work by the authors indicate that evolutionary algorithms can be used 

effectively to analyze masses it was decided, initially, to work exclusively with 

microcalcifications, as more work has already been done in this area, providing a 

greater source of literature to which comparisons can be made. Additionally, 

microcalcifications are easier to identify than masses and so provide a more reliable 

source of data for both training and testing the algorithms. 

Due to the nature of the mammograms, traditionally there is a need for pre-

processing, particularly for detection or classification where methods such as wavelets 

or morphological filtering are used. One of the advantages of using an evolutionary 

method such as Cartesian Genetic Programming (CGP) is that there is no need for 

prepossessing the images. 

Previous work undertaken in the classification of microcalcifications using both 

traditional image analysis techniques and evolutionary algorithms is considered in 

Section 2.  The evolutionary algorithm used in the current work will then be described 

in Section 3 and results applying this technique to a number of digitized 

mammograms will be considered in Section 4.  Finally, the potential of the proposed 

algorithm will be evaluated in Section 5. 



2   Previous work 

Over recent years there has been much research into the application of computer 

aided diagnosis to breast cancer with numerous different approaches being exploited.  

Many of these involve image analysis of the digitized mammogram – a low dose x-

ray of the breast. A typical approach is to use a pattern recognition scheme that 

employs (i) sensing, (ii) segmentation, (ii) feature extraction, (iv) feature selection 

and (v) classification, to isolate and then characterize a feature of interest. Each stage 

of this processing is a potentially complex operation requiring much investigation. 

The work presented in this paper is concerned specifically with the characterization 

and classification of the microcalcifications - the feature extraction, feature selection 

and classification stages of the pattern recognition scheme. Consequently, the sensing 

and segmentation stages of the scheme, while relevant and important in a fully 

implemented system [3], are not considered here and for the purpose of the 

experiments described in Section 4 will be undertaken manually. 

2.1 Feature Extraction 

Once segmentation is completed any microcalcifications located needs describing 

in terms of features; these features are collected in the feature extraction stage. 

Features, as described here, are real numbers obtained by applying some 

mathematical expression to image data, e.g. spatial domain pixel values or 

transformed spectral data. By examining these features one can come to a conclusion 

as to the nature of the calcification 

The feature extraction process regularly exploits morphological features such as 

the area and perimeter, texture features such as spatial grey level dependence matrices 

and features taken from the wavelet transform of the image. Morphological features 

are often referred to as shape features and are useful in classification of 

microcalcifications. Reference [4] provides information for radiologists about the 

varying features of benign and malignant microcalcifications. For example it advises 

that benign examples have a round ring like shape with well defined borders. 

Malignant microcalcifications on the other hand have varying shape and poorly 

defined borders. Such characteristics can be described using morphological feature 

extraction. Reference [5] used a number of morphological features and these included 

area, mean density (calculated as average of pixels gray values above background 

level in the signal region), eccentricity, axis ratio and ratio of x direction to y direction 

moments. 

In terms of texture features, the spatial gray-level dependence (SGLD) matrix was 

used for many features derived including correlations, entropy, variance and angular 

second moment. Another neural network based paper [6] relied purely on texture 

features concentrating on ones from the SGLD matrix. 

An alternative method suggested in [7] uses the discrete cosine transform of the 

image to derive “block activity and spectral entropy from the DCT coefficients”. 

Reference [8] also gives brief mention of Fourier methods and a wavelet method 

whereby standard features (such as energy and entropy) were extracted from each 



scale in the transform. A wavelet transform allows the splitting of an image into 

different scales for various positions in the image, often referred to as a multiscale 

method.  

2.2 Feature Selection 

At the end of the feature extraction stage there may be a very large number of 

features and whether a statistical classifier,  neural network or a genetic algorithm (as 

will be the case in this investigation) is to be used, it is helpful to reduce the number 

of features. The likelihood is that some of the features extracted may be of no 

relevance in discriminating benign and malignant lesions. Thus, it is advantageous to 

select those features which will be most effective in the following classification stage. 

A useful comparison of feature selection techniques is presented in [5]. This 

compares two methods of feature selection, Linear Discriminant Analysis (LDA) and 

a genetic algorithm. In LDA features are added to and removed from the system used 

to decide which class (benign or malignant) a mammogram belongs to. All the 

features collected in the previous feature extraction stage are available to use. In 

stepwise LDA, the version described in the CAD literature, features are added one at 

a time. To decide if a feature is useful in discriminating between two classes the 

outputs of the system must be considered. There are two groups, outputs for when the 

input was malignant, and outputs for when it was benign. The analysis is done by 

comparing the within group sum of squares i.e. variance, to the between group one, 

and this is done in the case where the feature is included and when it is not. It is 

equivalent to saying that, if the means of the outputs between malignant and benign 

are similar without a feature and different with a feature then that feature is useful at 

discriminating. A threshold is used to determine if a feature is powerful enough. 

There is also a removal step where features are removed one at a time and excluded 

based on a threshold. i.e. if taking it out makes little difference it is excluded. 

Termination happens when the calculated power of all the features not chosen is less 

than that needed to enter and all those in are greater than the threshold for leaving. 

This is the more traditional selection technique but it is found in the comparison that 

“the GA could select a feature set comparable to or slightly better than that selected 

by stepwise LDA” [5]. 

2.3 Classification 

In the case of breast cancer, the classifier determines if a given mass or 

microcalcification is malignant or benign. It is the central part of any computer aided 

diagnosis scheme and ultimately decides whether a breast is deemed potentially 

cancerous, and in need of further investigation, or benign. If a scheme is overly 

cautious then it will have financial and resource implications, in that there might be 

too many check ups, or it might unnecessarily use up valuable time for a radiologist if 

it presents too many potential lesions for them to examine. On the other hand if it only 

selects the very obvious cases then it may pick up less than a radiologist and leave 



many potential cancers unnoticed. Therefore, it requires careful design. A number of 

popular classifiers are identified by [8] and listed here: 

• Neural networks: a parallel information processing network based on the 

structure of neurones. It is noted in [8] that they are advantageous in the situation 

where “only a few decisions are required from a massive amount of data and for the 

applications where a complex non-linear relation needs to be learned”. 

• K-nearest neighbours: This starts with a set of patterns for a known sample, for 

example a set of simple statistics for a set of microcalcifications that are known in 

advance to be cancerous. Then new unknown patterns can be compared to the known 

ones. The K nearest samples will be classified as having cancer as well. 

• Bayesian classifier: This considers the probability that a given pattern x belongs 

to a class wj indicating, for example, malignancy. This type of classifier minimizes 

the total loss - the probability of assigning the pattern to a given class when it actually 

belongs to another class [9]. 

2.4 Use of Evolutionary Algorithms 

Evolutionary algorithms are a family of population based algorithms that use facets 

of biological evolution such as natural selection, reproduction, mutation and 

recombination to evolve solutions to problems.  Examples of evolutionary algorithms 

include Genetic Algorithms, Genetic Programs are considered below. 

Genetic algorithms (GAs) have previously been used in CAD schemes and they 

have proved successful. One of the keys papers that influenced this project is a GA 

based paper [5] in which a genetic algorithm was used for feature selection and it 

proved successful in this area. Performance was found to be a match for the well 

established LDA method and even better sometimes. The review paper [5] also 

reported the only use of genetic algorithms as being in feature selection as in the 

aforementioned paper. Neural networks are another biologically inspired technique 

that has been widely adopted and successfully, but uses of GAs are limited and this 

raises the question of whether genetic algorithms could be further used. Genetic 

Programs (GPs) have previously been used in image processing by Cai, Smith and 

Tyrrell for noise removal from images [10]. In this case a form of genetic program 

called Cartesian Genetic programming (CGP) was used (this will be explained 

shortly). Clearly, the removal of noise is a very different to pattern recognition but it 

suggests that application of genetic algorithms to this type of problem could be an 

interesting avenue to explore. 

An example of the use of genetic algorithms as an alternative feature selection 

method starts with a data structure termed a chromosome which is the length of the 

total number of features available. Each gene in the chromosome is a bit which is 1 or 

0 where 1 indicates that a particular feature is included. For example bit 5 might be 

chosen to represent image entropy. There is a population of random chromosomes and 

for each one classification is performed. A new population is generated using: parent 

selection, crossover and mutation. When the parents are selected it is designed so that 

ones deemed fitter are more likely to be chosen. By fitter it is meant the ones that 

resulted in a more accurate classification. This is continued for either a certain 

number of population generations or until a certain level of classification is obtained. 



It should be noted that there might be bias in the classifier, such that a certain set of 

input values might favor a particular set of features; to avoid this, the broadest range 

of data sets should be used. 

3. Implementation 

Cartesian Genetic Programming (CGP) has been used in this work [11].  CGP is a 

graph-based genetic programming system which has been shown to perform well 

within a wide range of problem domains. A CGP solution consists of an n-

dimensional grid (where n is typically 1 or 2) in which each grid location contains a 

function. Program inputs and outputs are delivered to and taken from specific grid 

cells. Interconnections between functions, inputs and outputs are expressed in terms 

of the grid’s Cartesian co-ordinate system. The 2-D CGP general form is shown in  
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Fig 1. General form of two-dimensional CGP. It is a grid of nodes whose functions are chosen 

from a set of primitive functions. Each node is assumed to take as many inputs as the maximum 

function arity a. Every data input and node output are labelled consecutively (starting at 0) 

which gives it a unique data address which specifies where the input data or node output value 

can be accessed (shown in the figure on outputs of inputs and nodes). Nodes in columns cannot 

be connected to each other. In most cases the graph is directed (as in this paper) so that a node 

may only have its inputs connected to either input data or the output of a node in a previous 

column. In general there may be a number of output genes (Oi) which specify where the 

program outputs are taken from. The structure of the genotype is seen below the schematic. All 

node functions genes fi are integer addresses in a look-up table of functions. All connection 

genes Cij are integers taking values between 0 and the address of the node at the bottom of the 

previous column of nodes. 

 



A mutation operator can alter both the function present within a grid cell and the 

connections between components. The efficacy of CGP has been attributed to both 

implicit reuse of sub-expressions (due to its graphical representation) and its use of 

functional redundancy [11][14]. In this paper multiple CGP networks are used to 

evolve a single mammogram. The image is divided into equal sized, non-overlapping 

parts and each one of these is assigned its own CGP network which is evaluated 

independently as shown.  The division of the mammogram into parts should not, 

however, be confused with a conventional image processing windowing operation.  

More specifically, in this work each genotype consists of 256 independent CGP 

chromosomes using a grid of 32 rows and 128 columns. Each chromosome has 64 

inputs corresponding to an 8x8 grid of grey scale pixel values (0 to 255). Each 

chromosome has a single output gene. The mammogram images are divided into 256, 

8x8 pixel areas. The 64 grey scale pixel values (0 to 255) for each of these areas form 

the inputs to an individual CGP network, encoded by a chromosome. A summary of 

these details is given in Table 1. The chromosome mutation rate defines the 

percentage of genes in each chromosome that are mutated when a genotype is mutated 

(i.e. for 32x128 nodes there are 3x32x128+1 genes. The one corresponds to the single 

output gene).  The function set is shown in Table 1 (where x&y represents the bitwise 

AND function).  The output from all node operations is kept within the range 0 to 

255, by truncation. 

Table 1.  Parameters for multiple CGP network  

Parameter Value 

No. parts per image 256 (16x16) 

Part size 8x8 pixels 

Chromosome rearrangement rate 3% 

Chromosome mutation rate 1% 

No. runs 10 

No. generations 1000 

No. columns in each CGP network 128 

No. rows in each CGP network 32 

Function set x, x+y, abs(x-y), abs(2x-y), x&y, 

largest(x,y), smallest(x,y) 

 

 

One of the motivations for developing this representation was to implement 

recombination in CGP but at a whole chromosome level as opposed to recombining 

genes within chromosomes. This multi-chromosome approach has been shown to 

have a number of advantages [12]. So whole CGP chromosomes could be exchanged 

rather than components (genes) within one network. This approach not only aims to 

improve the system’s performance on one given part of an mammogram but also 

allows for improvement of the system’s performance on the whole mammogram by 

allowing individual CGP chromosomes to be swapped and reused for other parts of 

the image depending on the success or fitness they achieve.  

The evolutionary algorithm is a 1+2-ES, in which there are three genotypes (each 

consisting of 256 chromosomes). There will be one parent selected whose genotype 

will consist of 256 chromosomes, each of which is the best chromosome chosen from 



the three population members. However, we have investigated another mutational 

step after this best genotype is assembled. According to another mutation rate, which 

we call a re-arrangement mutation rate (see table 1), chromosomes may undergo 

either a swap or replacement with another of the 256 chromosomes, chosen at 

random. Specifically:   

(i) a random swap in which any chromosome might be swapped with another 

(random-swap); 

(ii) a neighbouring swap in which a part might only be swapped at random 

with its four direct spatial neighbours. The neighbouring swap has been 

implemented to target structures that continue from one part of the image 

to the next. Neighbouring parts might therefore have similar image 

properties and are therefore likely to respond equally well to the same 

chromosome. (neighbourhood swap); 

(iii) a copying operation where a random chromosome is chosen to overwrite a 

different chromosome  (re-use). 

If after a rearrangement a chromosomes fitness declines from the operations then 

the rearrangement is disallowed. If, however, the rearranged part makes an 

improvement to the resulting fitness, then the exchange is preserved. Although there 

is a risk that the diversity of chromosomes might be reduced by deleting ones that do 

not perform well and substituting them with a copies of a fitter one, this approach 

gives the genotypes a higher opportunity for individual mutation which in itself has 

the potential of restoring diversity to some extent. We can see this because if every 

chromosome is unique (no copies) then mutations can only be beneficial 

independently. If there are duplicated chromosomes, any mutation occurring in those 

would have to be, on average, beneficial to all of them. This means one chromosomes 

fitness might be reduced if all other copies gained a higher fitness, through the 

rearrangement.  

Images used in this study are constructed from mammograms in the LLNL 

database that feature microcalcifications. As described in the introduction the images 

have been manually edited to avoid the need to automatically locate 

microcalcifications.  In each case a 128x128 pixel image is constructed containing at 

least one microcalcification from a particular mammogram. Each image is then 

logically divided into 256 parts and the status of each part labelled as either being 

benign or malignant according to the radiologist. 

When an image is processed by the system the output value generated for each 

chromosome by its respective CGP network is compared to a predetermined 

threshold. An output value above the threshold is interpreted as an indication of 

malignancy and an output value below the threshold an indication of benignity.  In 

this study output values ranged from 0 to 255 and the threshold adopted was 4.  This 

bias toward benign results reflects the relative scarcity malignant areas within the 

image.  A fitness value can be then be calculated on this basis of this predicted value 

and the predetermined status of that part of the image as identified by the radiologist. 



4 Results 

As previously stated, the mammograms used in this study were taken from the 

Lawrence Livermore National Laboratory database [13] that specifically featured 

microcalcifications. The mammograms were cropped to images of 128x128 pixels 

containing at least one microcalcification. In total 31 images were created, of which 

13 contained malignant microcalcifications and 18 benign microcalcifications.  Some 

67% of these images were used for training the CGP network and the remaining 33% 

for the testing stage.  

In the training phase, the single parts reached different fitness values with an 

average of 81.2% to 90.6% depending on the method used. Full results are given in 

Table 2 which also details the performance of a number of chromosome 

rearrangement strategies. Graphs for average and best fitness are also given in Figures 

2 and 3 respectively. 

Table 2.  Fitness values for training of CGP networks  

Recombination Best part’s fitness 

(%) 

Worst part’s fitness 

(%) 

Average fitness 

(%) 

No swap, no reuse 94.9 54.5 81.2 

No swap, reuse 95.7 67.8 85.5 

Neighbouring swap, no reuse 96.9 62.0 87.8 

Neighbouring swap, reuse 96.9 63.9 89.0 

Random swap, no reuse 96.5 70.6 89.4 

Random swap, reuse 96.9 71.4 90.6 

 

One of the problems that might occur when applying the evolved programme to 

test images is that some of the CGP networks may not have been trained with image 

parts containing a microcalcification and therefore will only recognise background 

breast tissue. To overcome this problem each part of the test image is evaluated with 

every evolved CGP chromosome. The highest fitness score generated is then used to 

classify that respective part (without any knowledge of its true class). The fitness 

values of the test set of images are shown in Table 3. 

Table 3.  Fitness values for test images  

 Best part’s fitness 

(%) 

Worst part’s fitness 

(%) 

Average fitness 

(%) 

No swap, no reuse 97.3 84.7 93.3 

No swap, reuse 98.0 81.6 94.1 

Neighbouring swap, no reuse 98.4 82.0 94.5 

Neighbouring swap, reuse 98.4 81.2 94.5 

Random swap, no reuse 98.0 82.7 94.5 

Random swap, reuse 98.4 81.2 94.9 



  

Fig 2. Average fitness for training phase of CGP networks with different recombination 

strategies. 

 

Fig 3. Best fitness for training phase of CGP networks with different recombination strategies. 



 An example result is shown in Figure 4. Each figure represents an image part (64 

pixels), the number “1” indicates a malignancy in that area and number “0” indicates 

a benignancy. The radiologist’s classification of malignancy is indicated by grey 

shading. Figure 4 shows the respective mammogram. 

 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Fig. 4. System’s classification of image parts  

1 = malignancy, 0 = benignancy. Grey 

shading radiologist’s classification of 

malignancy. 

 

 
 

Fig. 5.  Mammogram relating to results 

shown in Figs. 2 and 3.  

5   Conclusion 

This paper has described a novel multiple network CGP evolutionary algorithm 

applied to the classification of mammograms. The results presented have 

demonstrated that the method correctly classifies microcalcifications as being 

malignant or benign. Given the limitations of the training and the test sets available, 

and no pre-processing has needed to been applied, the results are very encouraging. 

The main limitation of the data available is the low number of usable images from a 

fairly old database. To overcome this problem, new databases of mammograms are 

being sought so further work to evaluate and improve the system can be conducted. 
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