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Abstract

In this paper, we will define a quantum operator that performs the standard inversion about the mean only on a subspace of the system (Partial
Diffusion Operator). This operator is used together with entanglement in a quantum search algorithm that runs in O(

√
N/M) for searching an

unstructured list of size N with M matches such that 1 ≤ M ≤ N . We will show that the performance of the algorithm is more reliable than known
fixed operators quantum search algorithms especially for multiple matches where we can get a solution after a single iteration with probability
over 90% if the number of matches is approximately more than one-third of the search space. We will show that the algorithm will be able to
handle the case where the number of matches M is unknown in advance in O(

√
N/M) such that 1 ≤ M ≤ N .

c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In 1996, Grover [5] presented a quantum search algorithm
for a single match within an unstructured list of N items
with quadratic speed-up over classical algorithms. Much work
has been done to analyze and/or generalize the algorithm for
multiple matches [2,4] where it was shown that the number of
iterations is approximately π/4

√
N/M for small M/N , where

M is the number of matches, to get a probability of success
at least 50% when M/N = 0.5. It was shown in [8] that the
problem will be harder for multiple matches where it might be
expected to be easier. Other work has been done for a known
number of multiple matches with arbitrary superposition and
phase shifts [1,3,7]. For the sake of practicality, the operators
should be fixed and are able to handle the problem with high
probability whether or not M is known in advance. In this paper,
we will propose a quantum algorithm that uses fixed amplitude
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amplification operators that runs in O(
√

N/M). The algorithm
gives higher probability of success than known quantum search
algorithms where it needs only a single iteration to get
probability over 90% if M/N > 1/3 and with probability of
success at least 87.88% over the whole range. In [10] Younes
et al. presented an algorithm that exploits entanglement and
uses partial diffusion operator to perform the quantum search.
Grover described this algorithm as the best quantum search
algorithm [6].

In this paper, we will extend [10] to show that algorithm
is able to handle the whole range 1 ≤ M ≤ N more reliably
whether or not the number of matches is known in advance. The
plan of the paper is as follows: Section 2 introduces the general
definition of the unstructured search problem. Section 3 defines
the partial diffusion operator. Section 4 introduces the algorithm
and an analysis of its behavior. Section 5 shows a comparison
with Grover’s original algorithm. Section 6 introduces the
algorithm shown in [2] for an unknown number of matches by
replacing Grover’s algorithm with the algorithm proposed here.
The paper will end up with a general conclusion in Section 7.
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2. Unstructured search problem

Consider an unstructured list L of N items such that L =

{0, 1, . . . , N − 1}. For simplicity and without loss of generality
we will assume that N = 2n for some positive integer n.
Consider a function (oracle) f which maps an item i ∈ L
to either 0 or 1 according to some properties this item should
satisfy, i.e. f : L → {0, 1}. The problem is to find any i ∈ L
such that f (i) = 1 assuming that such an i exists in the list.

3. Partial diffusion

The partial diffusion operator, Pinv , is an operator which
performs the inversion about the mean, and a phase shift of
−1 on the subspace of the system entangled with the extra
qubit workspace in state |0〉, and |1〉 respectively. The diagonal
representation of Pinv when applied on n + 1 qubits system can
take this form:

Pinv =
(
H⊗n

⊗ I1
)
(2 |0〉 〈0| − In+1)

(
H⊗n

⊗ I1
)
, (1)

where the vector |0〉 used in Eq. (1) is of length 2n+1, H is

the Hadamard gate
(

H =
1

√
2

[
1 1
1 −1

])
, and Ik is the identity

matrix of size 2k
× 2k . A general quantum system of size n + 1

can be represented as follows:

|ψ〉 =

N−1∑
j=0

α j (| j〉 ⊗ |0〉)+

N−1∑
j=0

β j (| j〉 ⊗ |1〉) . (2)

Applying Pinv on |ψ〉 gives,

N−1∑
j=0

(
2 〈α〉 − α j

)
(| j〉 ⊗ |0〉)−

N−1∑
j=0

β j (| j〉 ⊗ |1〉) , (3)

where 〈α〉 =
1
N

∑N−1
j=0 α j represents the mean of the

amplitudes of the subspace
∑N−1

j=0 α j (| j〉 ⊗ |0〉), i.e. applying
the operator Pinv will perform the inversion about the mean
only on the subspace

∑N−1
j=0 α j (| j〉 ⊗ |0〉) and will only

change the sign of the amplitudes for the rest of the system,
i.e.

∑N−1
j=0 β j (| j〉 ⊗ |1〉).

4. The algorithm

For a list of size N = 2n , prepare a quantum register of size
n + 1 qubits all in state |0〉 and apply the steps of the algorithm
as follows. Its quantum circuit is shown in Fig. 1:

1- Apply the Hadamard gate on each of the first n qubits so
they contain the 2n values representing the list.

2- Iterate the following steps q times:
i- Apply the oracle U f to map the items in the list to either

0 or 1 simultaneously and store the result in the extra
workspace qubit,
U f |x, 0〉 → |x, f (x)〉 .

ii- Apply the partial diffusion operator Pinv .
3- Measure the first n qubits.

Fig. 1. Quantum circuit for the proposed algorithm.

4.1. Analysis of performance

The main idea of using the partial diffusion is to split the
subspace of the solutions into two smaller subspaces [10]. In
each iteration, one of the solution subspaces will be inverted
about the mean (together with the non-solution subspace) while
the other half will have the sign of their amplitudes changed to
the negative sign, preparing it to be inverted about the mean
(together again with the non-solution subspace) in the next
iteration. The benefit of this alternating inversion is to preserve
half the number of the solution states at each iteration so as to
resist the de-amplification behavior of the standard diffusion
operator when reaching the so-called turning points. The oracle
U f will create entanglement between the solution and non-
solution subspaces and the extra working qubit after the first
iteration. Applying U f afterwards will swap the two solution
subspaces by switching the entanglement without affecting the
non-solution sub-space.

Let M be the number of matches, which makes the oracle f
evaluates to 1, such that 1 ≤ M ≤ N . Assume that

∑
′

i indicates
a sum over all i which are desired matches, and

∑
′′

i indicates a
sum over all i which are undesired items in the list. The system
after q ≥ 2 iterations can be expressed as follows:∣∣∣W (q)

〉
= aq

N−1∑
′′

i=0

(|i〉 ⊗ |0〉)+ bq

N−1∑
′

i=0

(|i〉 ⊗ |0〉)

+ cq

N−1∑
′

i=0

(|i〉 ⊗ |1〉) , (4)

such that,

(M − N )a2
q + M(b2

q + c2
q) = 1, (5)

notice that we are dealing mathematically with the whole n + 1
qubits system including the extra qubit workspace. The mean to
be used in the definition of Pinv is as follows: Let y = 1−M/N
and s = 1/

√
N , then

〈
αq
〉
= yaq−1 + (1 − y)cq−1, and aq , bq

and cq used in Eq. (4) are calculated as follows:

a0 = s, a1 = s (2y − 1) , aq = 2
〈
αq
〉
− aq−1,

b0 = s, b1 = 2sy, bq = 2
〈
αq
〉
− cq−1,

c0 = 0, c1 = −s, cq = −bq−1.

(6)

The probabilities of the system to find a solution P(q)s and
not to find a solution P(q)ns are,

P(q)s = M(b2
q + c2

q), P(q)ns = (N − M) a2
q , (7)
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notice that, using Eq. (5), P(q)s + P(q)ns = 1. Solving the above
recurrence relations shown in Eq. (6), the closed forms are as
follows:

aq = s
(
Uq (y)− Uq−1 (y)

)
, bq = sUq(y),

cq = −sUq−1(y),
(8)

where Uq (y) = sin ((q + 1) θ) / sin (θ) is the Chebyshev
polynomial of the second kind [9], y = cos (θ) = 1 − M/N
and 0 < θ ≤ π/2.

To find a match with probability as close as possible to
certainty on any measurement, we have to find q such that
P(q)s = 1, this will happen when q = π/2θ − 1/2. The
number of iterations must be an integer, let q = bπ/2θc
where |q − q| ≤ 1/2 and b c is the floor operation. Since,
cos (θ) = 1 − M/N , we have θ ≥ sin (θ) =

√
2N M − M2/N ,

then,

q =

⌊ π
2θ

⌋
≤
π

2θ
≤

π

2
√

2

√
N

M
= O

(√
N

M

)
, (9)

where the lower bound of P(q)s using q shown in Eq. (9) is given
by,

P(q)s ≥
1 + cos2 (θ)

1 + cos (θ)
=

1 +
(
1 −

M
N

)2
1 +

(
1 −

M
N

) ≥ 0.828. (10)

5. Unknown number of matches

In case we do not know the number of matches M in
advance, we can apply the algorithm shown in [2] for 1 ≤

M ≤ N by replacing Grover’s algorithm with the proposed
algorithm. The algorithm can be summarized as follows:

1- Start with m = 1 and λ = 8/7. (where λ can take any value
between 1 and 4/3).

2- Pick an integer j between 0 and m − 1 in a uniform random
manner.

3- Run j iterations of the proposed algorithm on the state:

1
√

N

N−1∑
i=0

|i〉 ⊗ |0〉.

4- Measure the register and assume that i is the output.
5- If f (i) = 1, then we found a solution and exit.

6- Let m = min
(
λm,

√
N
)

and go to step 2.

For the sake of simplicity and to be able to compare the
performance of this algorithm with that shown in [2], we will
try to follow the same style of analysis used in [2]. Before we
construct the analysis, we need the following lemmas. The first
lemma is straightforward using mathematical induction.

Lemma 5.1. For any positive integer m and real number θ such
that 0 < θ ≤ π/2,

m−1∑
q=0

sin2 ((q + 1) θ)+ sin2 (qθ) = m −
cos (θ) sin (2mθ)

2 sin (θ)
.

Lemma 5.2. Assume that M is the unknown number of matches
such that 1 ≤ M ≤ N. Let θ be a real number such that
cos (θ) = 1 − M/N and 0 < θ ≤ π/2. Let m be any positive
integer. Let q be any integer picked in a uniform random
manner between 0 and m − 1. Measuring the register after
applying q iterations of the proposed algorithm starting from
the initial state, the probability Pm of finding a solution is as
follows,

Pm =
1

1 + cos (θ)

(
1 −

cos (θ) sin (2mθ)

2m sin (θ)

)
,

where, Pm ≥ 0.2725 for m ≥ 1/ sin (θ).

Proof. Using Eqs. (7) and (8), the probability of success when
applying q iterations of the proposed algorithm

P(q)s = (1 − cos (θ))

(
sin2 ((q + 1) θ)

sin2 (θ)
+

sin2 (qθ)

sin2 (θ)

)
.

The average probability of success when applying q
iterations of the proposed algorithm when 0 ≤ q ≤ m is picked
in a uniform random manner is as follows,

Pm =

m−1∑
q=0

1
m

P(q)s

=
1

m (1 + cos (θ))

m−1∑
q=0

sin2 ((q + 1) θ)+ sin2 (qθ)

=
1

1 + cos (θ)

(
1 −

cos (θ) sin (2mθ)

2m sin (θ)

)
.

If m ≥ 1/ sin (θ) then cos (θ) ≈ 1, so,

Pm >
1
2

−
sin (2mθ)

4m sin (θ)
≥

1
2

−
sin (2mθ)

4
,

where sin (2mθ) < 0.91 for 0 < θ ≤ π/2. Pm will be at least
0.2725 when M � N , i.e. Pm ≥ 0.2725 for 1 ≤ M ≤ N . �

We calculate the total expected number of iterations
following Theorem 3 in [2] to be able to compare results.
Assume that mq ≥ 1/ sin (θ), and vq =

⌈
logλ mq

⌉
. Notice

that, mq = O
(√

N/M
)

for 1 ≤ M ≤ N , then:

1- The total expected number of iterations to reach the critical
stage, i.e. when m ≥ mq :

1
2

vq∑
v=1

λv−1 <
1

2 (λ− 1)
mq = 3.5mq .

2- The total expected number of iterations after reaching the
critical stage:

1
2

∞∑
u=0

(0.7275)u λvq+u <
1

2 (1 − 0.7275λ)
mq = 2.9mq .

The total expected number of iterations whether we reach to
the critical stage or not is 6.4mq which is in O(

√
N/M) for

1 ≤ M ≤ N .
When this algorithm employed Grover’s algorithm [2], and

based on the condition mG ≥ 1/ sin (2θG) = O
(√

N/M
)
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Fig. 2. The actual behavior of the functions representing the total expected
number of iterations for Grover’s algorithm 8mG and the proposed algorithm
6.4mq taking λ = 8/7, where the number of iterations is the flooring of the
values (step function).

for 1 ≤ M ≤ 3N/4, where mG will act as a lower bound
for qG in that range. The total expected number of iterations
is approximately 8mG . For M > 3N/4, mG will increase
exponentially where it will not be able to approximate qG .
Employing the proposed algorithm instead, and based on the
condition mq ≥ 1/ sin (θ) = O

(√
N/M

)
for 1 ≤ M ≤ N ,

the total expected number of iterations is approximately 6.4mq ,
i.e. the algorithm will be able to handle the whole range, since
mq will be able to act as a lower bound for q over 1 ≤ M ≤ N .
Fig. 2 compares between the total expected number of iterations
for both algorithms taking λ = 8/7.

6. Conclusion

The probability of success of Grover’s algorithm (Fig. 3)
as shown in [2] is P(qG )

s = sin2 ((2qG + 1) θG), where

sin2 (θG) = M/N , 0 < θG ≤ π/2, the required number of
iterations is qG = bπ/4θGc ≤ π/4

√
N/M . The lower bound

of the probability of success using qG is given by, P(qG )
s ≥

1 − M/N ≥ 0.

In Grover’s algorithm, the search space is split into two
subspaces (the solution and non-solution subspaces) then
amplifies the amplitudes of the solution states by iterating the
diffusion operator and the oracle [5] to find a match with
high probability in O(

√
N/M) for small M/N and in the

neighborhood of M/N = 1/4 [2]. The main idea of using
partial diffusion in quantum search is to split the subspace
of the solutions into two smaller subspaces. In each iteration,
one of the solution subspaces will be inverted about the mean
(together with the non-solution subspace) while the other half
will have the sign of their amplitudes changed to the negative
sign, preparing it to be inverted about the mean (together
again with the non-solution subspace) in the next iteration via
entanglement. The benefit of this alternating inversion is to
preserve half the number of the solution states at each iteration
so as to resist the de-amplification behavior of the standard
diffusion operator when reaching the so-called turning points
and get the solution with high probability in O(

√
N/M) for

1 ≤ M ≤ N . Apply the oracle U f each iteration will switch
the entanglement of the two solution subspaces with the extra
qubit workspace to decide which subspace to be inverted about
the mean with the non-solution subspace.

An algorithm for unknown number of matches replacing
Grover’s step in the algorithm shown in [2] is presented, where
we showed that the algorithm will be able to handle the range
1 ≤ M ≤ N in O(

√
N/M) compared with 1 ≤ M ≤ 3N/4

when using Grover’s algorithm.

We showed that the algorithm will be able to handle the
whole possible range 1 ≤ M ≤ N more reliably using fixed
operators in O

(√
N/M

)
for both known (as shown in Fig. 3)

and unknown number of matches.

Fig. 3. Probability of success for: (a) Using the required number of iterations for both algorithms, (b) same as (a) for M/N ≤ 1 × 10−3. x-axis is M/N and y-axis
is the probability. Figures numbered from left to right and dotted line indicates Grover’s algorithm, solid line indicates the proposed algorithm.
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