Evolutionary Approach for Finding Correlation
Immune Boolean Functions of Order ¢t with
Minimal Hamming Weight

Stjepan Picek!, Sylvain Guilley?, Claude Carlet®, Domagoj Jakobovic*, and
Julian F. Miller®

! KU Leuven, ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven-Heverlee, Belgium
2 TELECOM-ParisTech, Paris, France & Secure-IC S.A.S., Rennes, France
3 LAGA, UMR 7539, CNRS, Department of Mathematics
University of Paris 8 and University of Paris 13
2 Rue de la Liberté, 93526 Saint-Denis Cedex, France
4 Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
5 Department of Electronics, University of York, York, UK

Abstract. The role of Boolean functions is prominent in several ar-
eas like cryptography, sequences and coding theory. Therefore, various
methods to construct Boolean functions with desired properties are of
direct interest. When concentrating on Boolean functions and their role
in cryptography, we observe that new motivations and hence new proper-
ties have emerged during the years. It is important to note that there are
still many design criteria left unexplored and this is where Evolutionary
Computation can play a distinct role. One combination of design criteria
that has appeared recently is finding Boolean functions that have various
orders of correlation immunity and minimal Hamming weight. Surpris-
ingly, most of the more traditionally used methods for Boolean function
generation are inadequate in this domain. In this paper, we concentrate
on a detailed exploration of several evolutionary algorithms and their
applicability for this problem. Our results show that such algorithms are
a viable choice when evolving Boolean functions with minimal Hamming
weight and certain order of correlation immunity. This approach is also
successful in obtaining Boolean functions with several values that were
known previously to be theoretically optimal, but no one succeeded in
finding actual Boolean functions with such values.

Keywords: Boolean Functions, Cryptography, Correlation Immunity,

Hamming Weight, Evolutionary Algorithms

1 Introduction

One usual source (although not the only one) of nonlinearity in ciphers are
Boolean functions. In block ciphers, the nonlinearity often comes from Substitu-
tion Boxes or S-boxes which are actually a number of Boolean functions (hence,

2 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. F. Miller

also the name vectorial Boolean functions). On the other hand, in stream ciphers
the nonlinearity comes from Boolean functions. Both of those scenarios, while
not the only ones, show us the prominent role of Boolean functions in cryptog-
raphy. Finding Boolean functions fitting all the criteria and analyzing the best
possible trade-offs between these criteria are still crucial questions today.

Historically, Boolean functions have been dominantly used in conjunction
with Linear Feedback Shift Registers (LFSRs). Two commonly used models are
filter generators and combiner generators. In a combiner generator, several LF-
SRs are used in parallel and their output is the input for a Boolean function.
On the other hand, in a filter generator, the output is obtained by a nonlinear
combination of a number of positions in a longer LFSR [3]. To be effective such
Boolean functions need to be balanced, have high nonlinearity, large algebraic
degree, large algebraic immunity, and high correlation immunity (in the case of
combiner generators).

To obtain such functions, there exist a number of construction methods.
Those methods can be roughly divided into algebraic constructions, random
search, heuristics and combinations of those methods [19]. In this paper, we
examine one branch of heuristics, more precisely Evolutionary Algorithms (EAs),
in order to evolve Boolean functions. It is worth mentioning that EAs can be
used either as the primary or the secondary construction method. In primary
constructions one obtains new functions without using known ones. In secondary
constructions, one uses already known Boolean functions to construct new ones
(either with different properties or sizes) [3].

We said that a Boolean function needs to be balanced (among other cri-
teria) to be suitable for cryptography. Indeed, this is true, but only when we
consider the role of Boolean functions in filter and combiner generators. How-
ever, recently one more application emerged where we are actually interested in
Boolean functions that have minimal Hamming weight and are therefore as far
as possible from being balanced. Such Boolean functions can be used to help
resist side-channel attacks.

Side-channel attacks do not rely on the security of the underlying algorithm,
but rather on the implementation of the algorithm in a device [13]. One class
of countermeasures against side-channel attacks are masking schemes. In mask-
ing schemes one randomizes the intermediate values that are processed by the
cryptographic device. One obvious drawback of such an approach is the masking
overhead which can be substantial in embedded devices or smart cards.

Correlation immune Boolean functions can reduce the masking overhead ei-
ther by applying leakage squeezing method [4,6] or with Rotating S-box mask-
ing [5]. We emphasize that a number of construction methods (primarily alge-
braic constructions) are not suitable for these design criteria since they produce
balanced Boolean functions.

Up to now, there has been almost no work to examine how to evolve Boolean
functions with various orders of correlation immunity and minimal Hamming
weight. This is the gap this paper aims to rectify. In order to do so, we experiment
with several algorithms, both from the single objective and the multi-objective

EA for Finding Correlation Immune Boolean Functions 3

optimization area. More precisely, we use Genetic Algorithms (GAs), Genetic
Programming (GP), Cartesian Genetic Programming (CGP), and NSGA-II. Our
investigation has a twofold impact since we offer a detailed examination of the
EAs performance on the aforementioned problem. Furthermore, we find values
previously completely unknown for certain Boolean function sizes and orders of
the correlation immunity property.

1.1 Related Work

There exist a number of works that examine Boolean functions in cryptography
and their generation with Evolutionary Computation (EC) techniques. Here, we
give only a small subset of works related to our investigation.

Millan et al. work with GAs in order to evolve Boolean functions with high
nonlinearity [15]. Burnett in her thesis uses GAs to evolve both Boolean func-
tions and Substitution boxes [2]. McLaughlin and Clark use simulated annealing
to evolve Boolean functions that have several cryptographic properties with op-
timal values [14]. Picek, Jakobovic and Golub experiment with GP and GAs
to find Boolean functions that have several optimal properties [18]. Picek et
al. experiment with both heuristics and heuristics in conjunction with algebraic
construction to evolve Boolean functions with high nonlinearity [20]. Picek et
al. use CGP to evolve Boolean functions with eight inputs and high nonlinear-
ity [19]. Finally, Picek et al. investigate several EAs in order to evolve Boolean
functions with different values of the correlation immunity property. In the same
paper, the authors also discuss the problem of finding correlation immune func-
tions with minimal Hamming weight, but they experiment only with Boolean
functions that have eight inputs [17].

The remainder of this paper is organized as follows. In Section 2, we describe
relevant cryptographic properties and representations of Boolean functions. Sec-
tion 3 represents the techniques for using Boolean functions in masking schemes
as well as our motivation for this research. In Section 4, experimental setup
and the algorithms we use are given. Section 5 presents the results and a short
discussion. Finally, Section 6 concludes and gives some suggestions for future
work.

2 Introduction to Boolean Functions and Their
Properties

Let n,m be positive integers, i.e. n,m € NT. The set of all n-tuples of the
elements in the field Fy is denoted as F§ where Fo is the Galois field with 2
elements. The inner product of two vectors a and b is denoted as a - b and
equals a - b = @ ,a;b;. Here, “®” represents addition modulo two (bitwise
XOR). The Hamming weight (HW) of a vector a, where a € F3, is the number
of non-zero positions in the vector.

4 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. F. Miller

An (n, m)-function is any mapping F from FJ to F5. If m equals 1 then the
function f is called a Boolean function.

A Boolean function f on F} can be uniquely represented by a truth table
(TT), which is a vector (f(0), ..., f(1)) that contains the function values of f,
ordered lexicographically, i.e. a < b [3].

The support supp(a) of a vector a is the index set of the non-zero positions
in a, i.e. supp(a) = {i : a; # 0}, and the support supp(f) of a Boolean function
f is the vector set of the non-zero entries in the truth table (TT) representation
of f,ie. supp(f) ={x: f(x) # 0} [3]. The HW of a Boolean function f is the
cardinality of its support.

The Walsh-Hadamard transform Wy is a second unique representation of
a Boolean function that measures the correlation between f(x) and the linear
function a - z [3]:

Wi(a) =) (-1)f@0e=, 1)

xzelFy

A Boolean function f is correlation immune of order ¢ (in brief, C'I(t)) if the
output of the function is statistically independent of the combination of any ¢ of
its inputs [21]. For the Walsh-Hadamard spectrum it holds equivalently [10]:

Wi(a) =0, for 1 < HW(a) <*t. (2)

3 Boolean Functions and Masking

Some applications manipulate sensitive data, such as cryptographic keys. Obvi-
ously, these should remain secret. However, skillful attackers might try to probe
bits within a processor or a memory; they often succeed, unless countermeasures
are implemented [9].

To protect secrets from probing attempts, it is customary to implement a
countermeasure known as masking. It consists in changing randomly the repre-
sentation of the key (and of any other data which depends on the key), so as
to deceive the attacker. For example, if each bit k;, 1 < i < n of a key k is
masked with a random bit m;, then an attacker could probe k; ® m;. However,
provided m; is uniformly distributed, the knowledge of k; & m; does not disclose
any information on bit k;, unless of course the attacker can also probe separately
m;, in which case a higher order masking would be necessary.

However, for implementation reasons, it is often impractical to mask each
bit individually. Indeed, the generation of random numbers is costly, thus it is
desirable to limit the number of random bits required. Furthermore, masking
each bit of a vector of length n would correspond to choosing the global mask
in the whole set of 2™ possible masks, which may be too costly.

Specifically, on the example of the AES cipher, some key bytes are mixed
with plaintext bytes before entering a Substitution box. Generating all the 256
Substitution boxes suitable for all possible masks in F§ is too expensive for
embedded systems. Hence, by restricting the number of possible masks, the
overhead incurred by the countermeasure becomes more affordable.

EA for Finding Correlation Immune Boolean Functions 5

Let us consider the simple example of masking one byte (n = 8). This can
be achieved by using two complementary masks, such as mg = (00000000)s
and m; = (11111111)5. An attacker who measures one bit of the masked byte
cannot derive any information about the corresponding unmasked bit. If we
define by f the Boolean function F§ — Fo whose support is {mg,m;}, then f
plays its masking role as it is balanced: any bit can take value 0 and 1 with equal
probability. In general, any Boolean function which is CI(1) is a valid masking.

Let us now consider a stronger attacker who is able to probe two bits simul-
taneously. In this case, some information can be recovered. Typically, if the two
masked bits are equal, then so are the two unmasked bits. So, by testing all pairs
of bits, the attacker can recover the whole key (or its complement). It happens
that, against such “second-order attacker”, it would be desirable that the masks
be the support of a C'I(2) Boolean function [6]. But clearly, this support must
have a cardinality strictly greater than 2. Hence, masking can be summarized as
the problem of finding Boolean functions whose support is a set of masks with
the two following constraints:

1. it should have small Hamming weight, for implementation reasons, and
2. it should have high correlation immunity ¢, in a view to resist an attacker
with multiple (< ¢) probes.
Clearly, there is a tradeoff. This motivates the research for low Hamming weight
high correlation immunity Boolean functions.

Some work on this topic has been summarized by Hedayat, Sloane and
Stufken in their book [11]. However, in this book, some entries (minimum Ham-
ming weight for a given pair (n,t)) are expressed as non-tight bounds. Recently,
the exact value for entries corresponding to (n = 9,¢ = 4), and (n = 10,t €
{4,5}) have been obtained by Carlet and Guilley in [6]. Still, the exact values
(n,t) € {(11,4 —5),(12,4 — 6),(13,4 — 7)} that are of practical interest, have
remained unknown until this research.

4 Experimental Setup

In this section, we briefly present the algorithms we use as well as the experi-
mental setup and fitness functions.

4.1 Single Objective Optimization

Genetic Algorithm. The GA represents the individuals as strings of bits rep-
resenting truth tables of Boolean functions. We use a simple GA with elimination
tournament selection with size 3 [8]. A mutation is selected uniformly at random
between a simple mutation, where a single bit is inverted, and a mixed mutation,
which randomly shuffles the bits in a randomly selected subset. The crossover
operators are one-point and uniform crossover, performed uniformly at random
for each new offspring. For each of the fitness functions we experiment with pop-
ulation sizes of 50, 100, 500, and 1000 and mutation probabilities of 0.1, 0.3,
0.5, 0.7, and 0.9.

6 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. F. Miller

Genetic Programming. GP uses a representation where individuals are trees
of Boolean primitives which are then evaluated according to the truth table they
produce. The function set for GP in all experiments is OR, XOR, AND, XNOR,
and AND with one input inverted. Terminals correspond to n Boolean variables.
Boolean functions may be represented with only XOR and AND operators, but
it is quite easy to transform it from one notation to the other. GP uses a tourna-
ment selection with tournament size 3 [12]. We use a simple tree crossover with
90% bias for functional nodes and a subtree mutation. We experiment with tree
depth sizes of 5, 7, 8, and 9 and population sizes of 100, 200, 500, 1000, and
2000.

Cartesian Genetic Programming. The function set ny for the CGP is the
same as for the GP. Setting the number of rows to be 1 and levels-back parameter
to be equal to the number of columns is regarded as the best and most general
choice [16]. We experiment with genotype sizes of 500, 1 000, 2 000, and 3 000 and
mutation rates of 1%, 4%, 7%, 10%, and 13%. The number of input connections
n, for each node is two and the number of program output connections n,
is one. The population size for CGP equals five in all our experiments. For
CGP individual selection we use a (1 + 4)-ES in which offspring are favored
over parents when they have a fitness better than or equal to the fitness of the
parent. The mutation operator is one-point mutation where the mutation point
is chosen with a fixed probability. The number of genes mutated is defined as
fixed percentage of the total number of genes. CGP solutions are directed graphs
with Boolean primitives as nodes, that are also evaluated using the truth table
they produce.

Fitness Function. The following fitness function for single objective optimiza-
tion is obtained after a set of experiments where we determined which one per-
formed best on average. The goal is maximization:

fitness = (MAX_HW — supp) — MAX_HW x |CI — TARGET_CI|. (3)

Here, M AX_HW represents the Hamming weight of a Boolean function that
has all ones in its truth table (i.e. HW = 2", where n represents the number of
inputs of a Boolean function), TARGET _C1I represents the order of correlation
immunity we want to find and finally, supp represents the cardinality of the
support of a Boolean function. The function consists of two parts: the first part
rewards Boolean functions with smaller support, while the second part acts as
a penalty for solutions with a correlation immunity that differs from the target.
The penalty part is multiplied with maximum value of the reward part, so that
any solution with the right CI is always better than any other solution with
different CI. This way, the distance to the target CI is regarded as a constraint,
and the support as a secondary objective.

EA for Finding Correlation Immune Boolean Functions 7

4.2 Multi-Objective Optimization

Since the goal of the function design includes two criteria, it can be formulated
as a multi-objective optimization problem. The first objective is attaining a de-
sired target correlation immunity, and the second one is the minimization of the
support. Following these criteria, a multi-objective problem can be formulated
as:

fitnessa = |CI — TARGET_CI|; (4)

fitnessg = MAX_HW — supp, (5)

where the first criteria, fitness,, is minimized, while the second criteria,
fitnesspg, is maximized.

In our experiments we applied the well known NSGA-IT algorithm for multi-
objective optimization [7]. Note that NSGA-II can be paired with any of the
Boolean representations (i.e. truth table in GA, tree in GP and graph in CGP),
but based on the performance in the initial round of experiments, we only present
the results of tree representation (GP) with multi-objective evolution.

4.3 Common Parameters

The number of independent runs for each experiment is 50. The function set
ny for both GP and CGP in all the experiments is OR, XOR, AND, XNOR,
and AND with one input inverted. For stopping condition we use the number of
evaluations which we set to 1000 000.

5 Results and Discussion

We report the performance of the selected algorithms, and additionally present
the best obtained values in order to compare EC with the existing results. For the
first part, the evolutionary algorithms are compared with each other using basic
statistical indicators to assess their performance. The comparison between EAs
is carried out using the parameter combinations that fill the gaps in the recent
work [6], i.e. for functions with the number of bits n and correlation immunity
t in the set (n,t) € {(11,4 —5), (12,4 —6), (13,4 —7)}.

For the second part, we only select the single best results obtained by any
algorithm and compare it with the values found in the related literature. Since
there is a large number of experiments, we conduct a parameter tuning phase for
a medium sized Boolean function of nine inputs and the correlation immunity
order of two. Parameter tuning phase has a stopping condition of 500 000 evalua-
tions. Later we use the best obtained set of parameters for all test scenarios. Due
to the lack of space, we do not present exhaustively the tuning phase results.

5.1 Genetic Algorithm

The results for GA in this application were very poor; in the tuning phase, where
we test different parameters for Boolean functions of 9 bits and target correlation

8 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. F. Miller

immunity equal to the value of two, we were unable to obtain a single solution
with the desired correlation immunity for any of the parameter settings. The GA
with the truth table representation does succeed in finding the desired values,
but only for very small problem sizes (e.g. for up to six variables), where the size
of the solution is not large. However, since those cases are not representative to
the problem, we do not experiment with GA in the rest of the paper.

5.2 Genetic Programming

Based on the results of the parameter tuning phase, the best performance for GP
was obtained with a maximum tree depth of five, whereas there were practically
no differences with regards to the population size. Based on this, we continued
with depth five and the population size of 1 000.

However, since the tuning was performed on 9 bit functions, we note that for
larger sizes (e.g. 12 or 13 bits), the maximum depth of five may simply be not
enough to represent the desired behavior. Indeed, while with the depth of seven
and the same number of evaluations we obtain statistically worse solutions in
general, there were cases where a single best solution was reached with a depth
of 7. This is further explored in Section 5.5, while for the algorithm comparison
we remain with the depth of 5 where the results are given in Table 1.

The results for each combination of n and ¢ are reported in the form of
avg/mazx/#hits, where avg represents the average best fitness value over 50
runs, mazx is the single best fitness value, and #hits is the number of runs in
which the best value was reached. We chose this simple statistic because the
fitness often assumes negative values (due to the penalty part in the fitness
function) which are not very indicative, and since the observed algorithms often
reach the same maximum value.

Table 1. Results for GP (single objective, maximization)

4 5 6 7

11 [1830.4/1920/15[1643.52/1 792/21
12 | 3840/3840/50 | 3507.2/3840/5 |2928.64/3072/43
13 | 7680,/7680/50 |7383.04/7630/37| 6021.12/6144/47 |5 324.8/6 144/30

5.3 Cartesian Genetic Programming

In the case of CGP, the best parameters after the tuning phase were mutation
probability of 13% and the genotype size of 500. The results of CGP with the
obtained parameter settings are given in Table 2, with the same nomenclature
as in Table 1. Negative value means that on average most of the runs did not
succeed in finding any solutions with the TARGET _C1T value. This suggests that
the number of evaluations was too low for those problem instances.

EA for Finding Correlation Immune Boolean Functions 9

Table 2. Results for CGP (single objective, maximization)

4 5 6 7

11 [1218.56/1792/4| 901.12/1536/6
12 [2549.76/3584/91515.52/3072/6|-532.48/2 048 /28
13 [4587.52/7168/2| 1638.4/6 144/8 | -819.2/4096,/20 |-3 604.48/4 0963

5.4 Multi-objective Genetic Programming

In the last phase, we used NSGA-II multi-objective algorithm to try to reach the
desired output while regarding both correlation immunity and Hamming weight
as independent objectives. Although the name implies a genetic algorithm, in
this work the multi-objective approach is used with tree-based representation of
GP, since it exhibited the best performance.

The results for the multi-objective approach were disappointing; in most
cases, the algorithm was unable to reach the desired target CI value, while the
secondary objective was very bad even in the other cases. We found solutions
only in cases when n = 12 and C'I = 4 where the support equals 2 048 and when
n = 13 and CI = 4 with the support equal to 4096. In the first case the value
was found three times, and in the second, only once.

5.5 Discussion

Finally, we combine all the single best values we obtained with any evolutionary
algorithm and present them in Table 3. In this table the values are not repre-
sented with our fitness function, in which the expression (M AX_HW — supp)
was maximized, but rather only as the resulting support (supp), since this form
was used in the existing work (note that in this case the smaller values are the
better ones). These best EC results are equal to those presented in Tables 1
and 2, with the exception of 13 bits and correlation immunity 6, where GP with
depth 7 obtained a better result.

This paper reports results for Boolean functions which were previously un-
known. These are indicated using gray cells in Table 3. When discussing the
optimality of those results, we follow the conjectures from [1].

Here, w,; represents the lowest weight of C'I(t) nonzero function of n vari-
ables. The conjecture was made in [1, Sec. C.2] that the values in each column of
Table 3 are non-decreasing. The values for (n,t) € {(11,4—5)} in Table 3 are in-
teresting from this viewpoint: if the conjecture is true then they are optimal since
they cannot be smaller than for (n,t) € {(10,4—5)}, but the conjecture may be
false; further investigations are needed to clarify this point. If (n,¢) € {(11,4-5)}
represent the minimal possible values; then since it is known from [1, Sec. C.1]
that w,; > 2w,_14_1, then the solution for n = 12 and ¢ € {5,6} has also a
minimal Hamming weight. Finally, for n = 13, by following the same reasoning,
Hamming weights for ¢ € {6,7} are again the optimal values, if the Hamming
weight for n = 11 and ¢ = 4, 5 is optimal. Actually, the value w36 = 1024 was

10 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. F. Miller

already known (see Table 12.1 at page 319 in [11]), hence it does not appear as a
gray cell in Table 3. However, there are cases in which we were unable to obtain
the target correlation immunity value, which are denoted with an x. There are
also instances in which none of the EAs we implemented was able to reach a
previously known optimal value, and those are marked in italic. We note that
some of those optimal values are actually trivial to obtain and by slight adjust-
ments in the fitness functions we could reach those levels. However, we decided
to follow a ‘black-box’ principle where we do not use specifics about the problem.
It is obvious that for some combinations of the number of bits and correlation
immunity, the optimization problem as formulated in this work, becomes very
hard. In these cases the fitness function is unable to lead the population in the
desired direction, which merits further research on both the design of the fitness
function and properties of the underlying fitness landscape, as well as the use of
different representations and genetic operators. Besides the comparisons based
solely on the obtained results, it is also possible to consider the speed of the
procedure. Indeed, in [1], authors report that with the SMT solver, the resolu-
tion of the problem can last several days. Obtaining the optimal values for the
largest Boolean function size of 13 inputs, with our approach lasted on average
30 minutes.

The failure of a GA with a bit-string representation to reach any meaningful
results may be explained with two causes: the first one relates to the problem
size, and its rapid increase with the number of bits. While the size of the truth
table grows exponentially with the number of bits, the size of the search space
grows with an even larger rate, which quickly renders a standard GA unusable.
The second reason could be a high epistasis of the problem since the bits in the
truth table are not independent. This in the conjunction with the fact that the
correlation immunity property is concerned with the statistical independence
of the bits on the output/input, could lead to a reason why higher values of
correlation immunity present difficulty for GA in bitstring representation. This
phenomenon can be also observed on the results from [17].

The multi-objective approach has also failed to produce competitive results.
Although the nature of the problem suggests different criteria may be optimized
independently, the NSGA-II explores a large region in the search space that is of
no interest to the final goal. In this application, the stated objectives can clearly
be regarded as a primary and a secondary one; first try to reach a desired cor-
relation immunity, and then reduce the Hamming weight as much as possible.
While the fitness function we presented may obviously be defined in many dif-
ferent ways, it is apparent that in the current form it is more effective than the
multi-objective approach. There are undoubtedly more applications in cryptog-
raphy where multi-objective optimization may prove useful, where a trade-off
between different properties is sought by the system designer.

EA for Finding Correlation Immune Boolean Functions 11

Table 3. Best obtained results.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
5 2 8 16 16 32
6 2 8 16 32 32 64
7 2 8 16 64 64 128 128
8 2 16 16 64 128 128 | 256 | 256
9 2 16 32 128 128 256 256 | 512 | 512
10 2 16 32 128 256 512 512 X 1024|1024
11 2 16 32 128 256 | 512 | 1024|1024 X 2048|2048
12 2 16 32 256 256 | 1024| 1024 X X X 4 096 | 4096
13 2 16 32 256 | 512 1024 | 2048 4096 | 4096 X X 8192|8192

6

In

Conclusion and Future Work

this paper we investigated the evolution of Boolean functions with minimal

Hamming weight and various orders of the correlation immunity property. An
approach based on Genetic Programming proved to be very successful since we
obtained very good results for all Boolean function sizes from five to thirteen
inputs. We emphasize that this approach also yielded previously unknown values,
where for the most of those it is possible to show they represent global optima.

In

our future work, we plan to concentrate on even larger Boolean functions in

an attempt to find more unknown values as well as the practical upper limit for
the use of EAs for the evolution of Boolean functions.

References

1.

Bhasin, S., Carlet, C., Guilley, S.: Theory of masking with codewords in hardware:
low-weight dth-order correlation-immune boolean functions. Cryptology ePrint
Archive, Report 2013/303 (2013), http://eprint.iacr.org/

Burnett, L.D.: Heuristic Optimization of Boolean Functions and Substitution
Boxes for Cryptography. Ph.D. thesis, Queensland University of Technology (2005)
Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes. In:
Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pp. 257-397. Cambridge University Press,
New York, NY, USA, 1st edn. (2010)

Carlet, C., Danger, J.L., Guilley, S., Maghrebi, H.: Leakage Squeezing of Order
Two. In: Galbraith, S., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT
2012, LNCS, vol. 7668, pp. 120-139. Springer Berlin Heidelberg (2012)

Carlet, C., Guilley, S.: Side-channel Indistinguishability. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy. pp. 9:1-9:8. HASP ’13, ACM, New York, NY, USA (2013)

Carlet, C., Guilley, S.: Correlation-immune Boolean functions for easing counter
measures to side-channel attacks (chapter 3). In: Niederreiter, H., Ostafe, A., Pa-
nario, D., Winterhof, A. (eds.) Algebraic Curves and Finite Fields Cryptography
and Other Applications, pp. 41-70. Radon Series on Computational and Applied
Mathematics 16, De Gruyter (August 2014)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182-197 (Apr 2002)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. F. Miller

Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer-
Verlag, Berlin Heidelberg New York, USA (2003)

Gammel, B.M., Mangard, S.: On the duality of probing and fault attacks. J. Elec-
tronic Testing 26(4), 483-493 (2010), http://dx.doi.org/10.1007/s10836-010-5160-0
Guo-Zhen, X., Massey, J.: A spectral characterization of correlation-immune com-
bining functions. IEEE Transactions on Information Theory 34(3), 569-571 (May
1988)

Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays, Theory and Appli-
cations. Springer series in statistics, Springer, New York (1999), ISBN 978-0-387-
98766-8

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc., Secaucus, NJ, USA (2007)

McLaughlin, J., Clark, J.A.: Evolving balanced Boolean functions with opti-
mal resistance to algebraic and fast algebraic attacks, maximal algebraic degree,
and very high nonlinearity. Cryptology ePrint Archive, Report 2013/011 (2013),
http://eprint.iacr.org/

Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong
balanced Boolean functions. In: Advances in Cryptology - EUROCRYPT ’98. pp.
489-499 (1998)

Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing Series,
Springer Berlin Heidelberg (2011)

Picek, S., Carlet, C., Jakobovic, D., Miller, J.F., Batina, L.: Correlation immunity
of boolean functions: An evolutionary algorithms perspective. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid,
Spain, July 11-15, 2015. pp. 10951102 (2015)

Picek, S., Jakobovic, D.,; Golub, M.: Evolving Cryptographically Sound Boolean
Functions. In: Proceedings of the 15th Annual Conference Companion on Genetic
and Evolutionary Computation. pp. 191-192. GECCO ’13 Companion, ACM, New
York, NY, USA (2013)

Picek, S., Jakobovic, D., Miller, J.F., Marchiori, E., Batina, L.: Evolutionary meth-
ods for the construction of cryptographic boolean functions. In: Genetic Program-
ming - 18th European Conference, EuroGP 2015, Copenhagen, Denmark, April
8-10, 2015, Proceedings. pp. 192-204 (2015)

Picek, S., Marchiori, E., Batina, L., Jakobovic, D.: Combining Evolutionary Com-
putation and Algebraic Constructions to Find Cryptography-Relevant Boolean
Functions. In: Parallel Problem Solving from Nature - PPSN XIII - 13th Inter-
national Conference, Ljubljana, Slovenia, September 13-17, 2014. Proceedings. pp.
822-831 (2014)

Siegenthaler, T.: Correlation-immunity of Nonlinear Combining Functions for
Cryptographic Applications (Corresp.). IEEE Transactions on Information The-
ory 30(5), 776780 (Sep 2006)

