Intrinsic Evolvable Hardware Implementation of a Robust Biological Development
Model for Digital Systems

Heng Liu, Julian F. Miller, Andy M. Tyrrell
Department of Electronics Department, University of York
Heslington York YO10 5DD, UK

{h1142, jfm, amt}@ohm.york.ac.uk

Abstract

An intrinsic evolvable hardware platform was realized to
accelerate the evolutionary search process of a biologically
inspired developmental model targeted at off-shelf FPGA
implementation. The model has the capability of exhibiting
very large transient fault-tolerance. The evolved circuits
make up a digital “organism” from identical cells which
only differ in internal states. Organisms implementing a 2-
bit multiplier were evolved that can‘“recover” from almost
any kinds of transient faults. This paper focuses on the
design concerns and details of the evolvable hardware
system, including the digital organism/cell and the intrinsic
FPGA-based evolvable hardware platform.

1 Introduction

Multi-cellular organisms are the most advanced type of
creatures which have evolved over millions of years of
evolution. They possess several intrinsic characteristics
electronic engineers earnestly long for, in particular, growth
and fault-tolerance. These features are achieved by means of
identical cells, all of which are developed from one special
cell (zygote). The entire process, called development, is
controlled by the interaction of cells rather than by a
centralized process (such decentralized systems are also of
interest to engineers).

1.1 Background of Development Principles

The development of an embryo is determined by genes,
which control where, when and how many proteins are
synthesized [1]. Complex interactions between various
proteins and between proteins and genes within cells and
hence interactions between cells are set up by activities of
genes. These interactions control how the embryo develops.

Biological development involves several key aspects:
cell division, emergence of pattern, change in form, cell
differentiation and growth. Cell differentiation emerges as a
result of differences in gene activities which lead to the

synthesis of different proteins. As development is
progressive, the fate of cells becomes determined at different
times. Inductive interactions by means of chemicals or
proteins between cells can make cells different from each
other and the response to these inductive signals depends on
the state of this cell. Patterning can involve the
interpretation of positional information and lateral
inhibition.

1.2 Fault-tolerant Techniques

Fault-tolerance is a technique applied to the
implementation of systems to ensure their reliability. With
the complexity of systems increasing dramatically, fault
tolerant techniques become more and more important.

Built-in redundancies and error handling capabilities are
the most widely used conventional fault-tolerant
technologies. Redundancies can be employed either spatially
or temporally. Spatial (area) redundancy can be employed
using Dual Modular Redundancy or Triple Modular
Redundancy, both of which are based on the majority vote
of individual modules. In temporal (time) redundancy
techniques, after an error output is detected, it is recomputed
in an attempt to recover from the transient fault. Although
time redundancy in general requires fewer resources than area
redundancy, it demands error handling capability which will
incontrovertibly increase the complexity of the system and
its design cost. In addition, it is difficult to design such an
error handling circuit to store adequate information for
recovery so that it can deal with most transient faults.

Transient faults account most system failures [2], so at
present we only concentrate on this kind of fault.

Development has inspired several hardware research
projects in the past [3, 4, 5]. However, in this paper a new
development-inspired technique will be considered that
makes use of chemical signals which grants the system
high tolerance to transient faults.

The structure of this paper is as follows: section 2
details the model proposed and its fault tolerant capabilities
exhibited in the software simulation; the following two
sections will describe the digital organism/cells and intrinsic
evolvable platform implementation of the 2-bit multiplier

problem respectively. Conclusions will be drawn in the
final section.

2 Development Cellular Model for Digital
System and its Fault-tolerant Feature

One of the most fundamental features of a development is
the universal cell structure: each of the cells in a multi-
cellular organism contains the entire genetic material, the
genome.

2.1 Cell Structure and Inter-Cell Connections

<
<

1
1
I A 4
1
}

N o U le ™ R
A A A
i P DY ST I A B VAN B R S ST
1 1 1
al alz) al 3
1 1 1
1 1 1
[[[

(o U SO | o CU | 1 o U o 1 >
= < < < < >
7 1 Y] 1
= Y A A
= E: EU EU

---q-» -r--rF-» -1 - = - >
T T
el el a3
1 1 1
1 1 1
1 1 1
1 1 1
Y 7Y v X
B PP PRI > (A I N A ISR 2 OA0 Y G AN RURY b 2 LA B G
T T T
)) 6.3
1 1 1
y v y v [v
SOUTH
LEGENDS:
CU Control Unit EU Execution Unit

— - p EU Function Selection

—— Cell border - - p Executing Signals

Fig. 1. Inter-connection of Cells

In the model proposed, shown in Fig. 1, every cell only
has direct access to the information of its four adjacent cells:
No direct long distance interaction between non-adjoining
cells is permitted.

In the digital hardware model (as shown in Fig. 1), the
internal structure of digital cells is shown in Fig. 2. A
digital cell is composed of three main components: Control

¢ States & Chemical Signals

Unit (CU), Execution Unit (EU) and Chemical Diffusion
module (CD).

cU ity SR
r—3
*
O 5 5 0 A
i g :_ - CD
EU
LEGENDS:

CU Control Unit CD Chemical Diffusion Module
EU Execution Unit —» State Signal
===% Chemical Signal == - Executing Signal

Fig. 2. Digital Cell Structure

The Control Unit (CU) has a States Register, which
stores the internal states of the cell, including the cell state
(type) and chemicals. Each CU connects to its 4 immediate
neighbors (shown in Fig. 1) and a Next States & Chemical
Generator determines its own next state/chemicals according
to the current states and chemicals of the neighbors, its own
state and its own chemical (illustrated in Fig. 2). The
NSCG contains two components: Next States Generator
(NSG) and Next Chemical Generator (NCG), both of which
are built from combinational circuits.

The EU Function Selection signal (the state of a cell) is
2-bit wide: O denotes a dead cell, in this case the EU will
simply propagate its west (left) inputs to its south and east
neighbors. All other cell types denote otherwise this is a
living cells for which the EU will execute and propagate its
calculated output to the south and east.

The Execution Unit (EU) is the circuit incorporated to do
the real calculation of the target application. The inputs to
each EU come from its immediate west and north
neighbors, and the state of this cell (refer to Fig. 2). Every
EU also propagates its output (Executing Signals) to its
immediate north and east neighbors. The Execution Unit
Core (EUC) is the evolvable core logic circuit, which
determines how to process the input signals in the EU.

At present only combinational applications are
considered, hence the EU is a combinational circuit. The
state and chemical signals are 2-bit and 4-bit wide
respectively, while the width of Executing Signal is 3-bit.
Both the internal core logical structures of EU (EUC) and
CU (NSG and NCG) are determined through evolution. So
that the genotype encodes the EU and CU internal
structures. The representation of the internal structure of the

EU and CU are based on Cartesian Genetic Programming
[7] (CGP): a program is expressed as an indexed graph
which is encoded in a linear string of integers. So the
genotype just contains a list of node connections and
functions.

2.2 Chemical Diffusion

The Chemical Diffusion module (CD) mimics aspects of
the real environment in which biological organisms live. In
principle, CD should not be a component of a digital cell.
However, this hardware design decision makes it more
convenient practically, so it is merged into the cell internal
structure.

The chemical signal is introduced to transmit
information between cells. Another function of the chemical
is to serve as a resource which is required for a dead cell to
transform to a living one.

Previous experiments [6, 8] suggest that chemicals are
indispensable in order to achieve robust solutions: without
chemicals, evolved individuals have poor stability and much
lower fitness. The chemical diffusion regulation is the key
mechanism which makes it such a significant aspect of this
model: cells have a means to send long-distance messages.

The chemical diffusion rule employed in this work is
similar to that in [6], except that there are only 4 immediate
neighbors in this case. So the rule is:

1 1
(Cij)H—l = _(Cij)t s 2 (Ckl)z ¢))
2 8 k,IEN

Let N denote all the 4 immediate neighbors of a cell at
(i, j) with neighboring position (k, /), the chemical at this
position at the new time step is given by (1). The meaning
of this equation is that each cell retains half of its previous
chemical and distributes the other half equally to its four
adjacent cells and receives the diffused chemical from them.
It is evident the rule makes sure that chemicals are
conserved (apart from the unavoidable loss when the level
falls below one) in the diffusion procedure.

The main task of the Chemical Diffusion module (CD)
(in Fig. 2) is to calculate the diffused chemical based on the
chemicals from the four immediate neighbors and the cell’s
own chemical value. The CD also propagates the calculated
value to the four adjacent cells.

2.3 Digital Organism Growth

Given a genotype, the inner-structure of the cells is
determined and a zygote is place at the centre of an ‘artificial
environment’ with x rows and y columns of cells. Initially
apart from the zygote cell all cells are dead (in state 0). The
position of the zygote was selected to speed up the growth:
it takes least time for the digital organism to “cover” the

entire area if the zygote is arranged in the centre. The inputs

to the cells on the border of this environment are fixed to 0.

In our model cells require the presence of chemicals to live.

This means that initially some chemicals must be injected

at the position of the zygote.

Given a genotype, the growth procedure is described as
follows:

1. Initialize chemical and the zygote;

2. Chemical diffusion;

3. All cells update their state simultaneously:

4. If no chemical at a position or all the cell’s four
neighbors and itself are dead, then this cell’s internal
program will not be executed;

5. Otherwise, it executes the program that is encoded by the
genotype, to generate its next time chemical and state
based on current states and chemicals;

6. If next state generated is alive, then overwrite chemical at
this position with its own generated chemical;

7. Otherwise, do not touch the chemical at this position;

8. Unless stopping criterion reached go to 2.

This model used in this paper was inspired by software
simulation of the ‘French Flag problem’ [8]. In this work, a
63 (9x7)-cell sized French flag was the intended final
pattern. 2 bits were used to represent the states of cells. 0
represented a (dead) cell without any colors (gray in
pictures); 1, 2, 3 were blue, white and red cells respectively
(all stem cells). One 8-bit wide chemical was used. Since
the function of the organism was defined as being coloured
like a French flag there was no EU. It was shown that some
evolved organisms could recover automatically from many
faults.

In initial work we developed the software model
described in this paper, and found it possible to evolve some
extremely robust individuals, one of which was able to
recover completely from any transient damage.

After this initial experiment, EUs were incorported and
we applied it to more practical application. The first such
application chosen was 2-bit multiplier, because of its
simplicity.

The task was to evolve a cell circuit that would grow to
become a 3x3 cells organism that implements a 2-bit
multiplier. The inputs to this multiplier were connected to
execution signals of cell (1, 1) and (2, 1), while the output
execution signals of cell (2, 3) and (3, 3) drove the ouput
result of this multiplier.

The next two sections present the implementation
concerns and details of the 2-bit multiplier development
model.

3 Digital Organism and Cells
Implementation

The core of the IEHW is the fitness evaluation module.
Digital cells, each of which contains one or more evolvable
sub logic circuits, are the building block of the digital
organism.

3.1 Evolvable Molecule

The molecules are the most fundamental elements of the
evolvable components of the model. Each evolvable sub-
circuit is composed of several molecules. Molecules are the
fundamental gates that make up the genome of the cell.

In order to save resources, the genotype is stored
centrally in registers outside of the digital organism. Each
molecule inputs, including the input selection signals and
function selection signal (/1, 12, I3 and Func in Fig. 3.), are
connected to its corresponding bits in the genotype. The
Data input pin connects to all the input data available to
this molecule, which may include inputs to the entire
circuit or the outputs of the molecules on the left of this
one.

——— Data<0:7> 0 ——

=—— Func< 1:2>

= 1<1:3>

= 12<1:3>

—— 13<1:3>

Fig. 3. Molecule Interface

Due to limited resources in the intended hardware
platform, the width of the data signal is 8, so each input
selection signal is 3 bit wide.

It was suggested that 3 input Universal-logic-module —
in our case a 2-1 multiplexer (an n-input ULM is logic
function which is capable of implementing any function
with n-1 independent binary input variables [9]). Although
other higher order ULMs could have been chosen we found
the MUX fits the average fan-in requirement of human-
design circuits most appropriately and if larger fan-in cells
are deployed, wiring density/complexity and wiring channel
proportion will increase considerably [9]. The MUX is
identified in [9] as the most appropriate candidate for
general-purpose fundamental logic element. The MUX
defines a three variable output function f

f= Y+ 0)s

This configuration, along with negation of the input
variables and constant 1 and 0, can realize all 2 input
functions.

Based on this theory, the available functions in a
molecule are limited to 4 types of multiplexers (the same as
in [6]), which are shown in Table 1: these algebraic
expressions are all the 4 possible combination of negation

of the input variables, so 2 bits are sufficient for func
signal.

Name Algebraic Expression
MUX1(A, B, C) AC + BC
MUX2(A, B, C) AC + BC
MUX3(A, B, C) AC +BC
MUX4(A, B, C) AC+BC
Table 1. Available functions for Molecules

The available inputs to a molecule in the hardware
implementation are constrained. As a result, no constant 1
or 0 is available as input to molecules. However, 1 and 0
can be achieved directly and efficiently by MUX3(X, X, X)
and MUX2(X, X, X) respectively, in which X refers to one
input variable to a molecule.

11, I2 and I3 operate three 8-to-1 multiplexer to select
the inputs from the 8-bit width input Data. The selected
three inputs are then fed to each of the four types of MUX
(MUXT1 to MUX4). One of the four outputs of the MUXs
will be selected by the Func input as the final output O of
this molecule.

This infrastructure of molecule has most similarity with
the fundamental multiplexer-based architecture of Xilinx
FPGA, but with less flexibility, which is a trade-off to
eliminates the possibility of evolving any configuration
leading to permanent hardware damages.

3.2 Digital Organism and Cell Interface

= A<1:2> X<13> <
——— B<1:2> Y<13> —<=—=
——— Clk Value<14> <=
——— Reset InjectFault ——<—=

== | VIYPE Result<14> =

Fig. 4. Digital Organism External Interface

The external interface of the digital organism is shown in
Fig. 4. Pin A, B and Result are the inputs and output of the
2-bit multiplier. Clk is the global clock signal; if the Reset
pin is high, all the internal registers will be set to their
initial values. All the remaining pins are dedicated to
injecting transient fault(s) into the digital organism: when
InjectFault pin is high, Value will be written into the
chemical of cell at coordinate (X, Y) if VTYPE is low,
otherwise the lowest 2-bit of Value is written into the state
of the cell. Meanwhile the whole organism stops its growth
process.

Every cell has an identical structure. Fig. 5 demonstrates
the external interface of a digital cell. Pin InjectFault,
VTYPE and Value are connected to their global

counterparts. If this cell is at the coordinate (X, Y) and
InjectFault is active (high), the CS pin of this cell will be
driven to high and the cell will overwrite its own chemical
or state with Value.

A “growth step” lasts two clock cycles: at the falling
edge of the first clock cycle a live cell (its state is not 0)
will replace the existing chemical with its generated one; at
the rising edge of the second clock, the chemicals diffuse
according to the rule described in section 2. At the rising
edge of the first clock cycle in the next “growth step”, the
state will be updated.

EChe<1:4> SChe<14>

ESta <12> SSta<12>
NChe<14> WChe< 14>
NSta<12> WSta <1:2>
NExe<1:3>

WExe<1:3>

Value <1:4>
InjectFault
Clk

Reset

VTYPE
Che<14>

Cs Sta <1:2>

OutExe <1:3>

Fig. 5. Digital Cell External Interface

3.3 Evolution Strategy

In the work presented here we used a software simulation
to evolve the desired structures. In order to simplify the
implementation, two phases are designed to evolve the
entire digital organism:

1. Evolve the structure of the EUC and the distribution
of states of the 3x3 cells. The genotype in this phase
consists of two parts: the CGP part encodes the EUC
structure; the other is the states for all the 9 cells. The
fitness is the correct bits of the multiplier result output: it
has two 2-bit inputs, so there is totally 2> x 2% = 16
possible combination of inputs. Since the output of a 2-bit
multiplier is 4-bit wide, 16 x 4 = 64 is the maximum
fitness for the organism in a given step.

2. Structures of NCG and NSG will be evolved to
discover a stable solution for the states distribution of cells
found in the first phase. This phase is the same as the
evolution process described in French Flag problem except
for some parameter values [6].

One of the patterns found in the first phase is shown in
Table 2. This pattern utilizes most available cells with a
diverse and complete distribution of states, so it is chosen
as the target configuration of the digital organism along
with its corresponding EUC structure obtained via
evolution.

0f1]3
213(2
31213

Table 2. Chosen Cell State Pattern
In order to search for more resource-saving individuals,
once a perfect solution was found, it would receive a fitness
bonus based on how many molecules it exactly used: the
fewer the better.

000
T

H ok A
B Reset]
W IniectFault
ol A 3
M E 3
il Result €] il 2 E]
o VTYPE

T

T

00

13130 0212
0323 01310 '%0222E
’%oosug D3350

%guu

7000 00100 INERNY m g% 05?5%

DOIE00 (01710 (IERRED 0369 0768

0000 ooion Tzo20 IEEE IEEE

0

[oo

00

200 400 500

EO0

00 200 1100

Fig. 6.

Developmental Growth Procedure (the white rectangle circle the mature pattern)

o Ck _
Wl Reset

:
:
:
:
:
:
:

W IniectFault

1] 100

1] 100 oo 100

aong 0ot aoon

0130 02030 %02220%
03230 02120

%DS‘IBD% 0013n
03220} 02220 02320

G230 03330

=lslsl=l

03230

I I I I

El=

4780 07670

07880 (1]

oo
oo

0 04780 04780

o010y 03330

05580]

07680 07680

m
I
=
=

EEEN IEEDED]

=

08330 03

oo
ol

0 09830 093830

1200 1400 1600 1800

2ns 2200 2400 2600

Fig. 7. Injection of the first set of faults and the recovery procedure

N Ok -0l - - -y -4 7 1] 7 1 11 1—
W Reset
W InjectFault
oA K]
e K]
48 Result E] 15] 1 2 3 E]
o vTYPE |
R 10011 100
oY 100 (K[}
H Value aoi
i States
o () 100000t
o 2 1001 3 0% 002308 01130¢ 030308 100130%
o 3 1023208 W2300F [in0300 023208 W22208 023208
M 10323 0¢ 100230F 033300 032308
i 5 {0aoaot
Chemicalz b b b
o (1) 000 00r
2] g{ﬂél?_ 0t 067907 HEEELR 045807 04780
ol (3 A07EE0F [O7E1a0f f0T26 1301 A06ES0 108780 7650 A7EE0F
o 4 109890 1015890 109990 1098390 109890 109890
o 3 {DDIDD t
Vi virn b virn b vorc b b heoocc o hoocncn booco o b b
3ns 3200 3400 3600 3800 4 ns

Fig. 8. Injection of the second set of faults and the recovery procedure

3.4 Hardware Simulation and Verification

The structures of the evolvable sub-circuits were evolved
in software and a robust solution was applied to the
hardware. The FPGA implementation was synthesized by
ISE 6.1i from Xilinx, downloaded into the hardware. The
detail of the waveform is demonstrated in Fig. 6. It can be
seen that the organism matures at 1ns, when the state
pattern is identical to that shown in Table 2. The
following experiment was carried out: enough time was
allocated to let the organism grow and mature (see Fig. 6).
Subsequently, two sets of transient faults were injected:
the first set was composed of 4 transient errors in the
chemicals of cell (2, 1), (2, 2), (2, 3) and (3, 3); the other

set of faults were injected into the states of cell (2, 1), (2,
3) and (3, 1). Every fault was chosen to make the
corresponding value 0. The time between the injections of
the two sets of transient faults was more than enough for
the organism to recover completely and stabilize itself
again in terms of chemicals and states of the cells (see
Fig. 7 and Fig. 8).

The recovery from of the first set of transient chemical
faults is illustrated in Fig. 7. At the beginning, the
chemical of some of the cells were modified, and then the
organism resumed growing. It recovered flawlessly at
2.4ns and the result output regained the correct value.

Fig. 8 demonstrates the recovery procedure from the
second set of transient state faults. The states of the 3

selected “victim” cells were killed (state 0) at the
beginning of this period. The organism again recovered
completely to the correct pattern at 4ns.

The FPGA on the RC1000 board [10] connects to the
host PC with a data width: 8-bit read and 8-bit write. A
further FPGA module “IOControler” was implemented to
latch all the required inputs and feed them to the digital
organism. Another function of IOControler is to cache the
result output of the digital organism.

4 Intrinsic EHW Implementation

After implementing the digital organism, several other
functional modules which are indispensable in the
Intrinsic Evolvable Hardware platform (IEHW) were
identified according to “divide and conquer” principle. The
top level modules are demonstrated in Fig. 10.

The IEHW implementation includes 3 main outputs:
MAX_Fitness, GenerationCount and Genotype. The first
and the second will be updated every generation to reflect
latest values, while the last output always propagates the
best individual that is evolved so far. Only two inputs are
required for this IEHW to function as expected: the global
clock signal and reset signal. Other inputs are optional
parameters, such as the seed for RNG and stop fitness.

Before describing the modules in details, the evolution
algorithm employed in this work will be discussed first.

4.1 Evolution Algorithm

Most existing widely employed evolution algorithms
are designed primary for software implementation, so they
are not particularly hardware friendly and efficient.

One of the significant hindrances of transforming the
most popular EAs to hardware is the “sorting” issue. All
of these popular EAs require some kinds of sorting to
work properly. Taking (MU + Lambda) - Evolution
Strategy [16] as an example', it selects the best
individuals from both offspring and parents to generate the
population of the next generation. This mechanism infers
that the fitness for all offspring and parents has to be
sorted to determine which the fittest individuals are.
However, hardware implementation of sorting is not only
inconvenient, but also extremely expensive in terms of
both resources consumption and design complexity.

In order to evade the problems of the popular EAs and
increase the efficiency of evolution, other alternative ones
were investigated. D. Levi’s HereBoy [14] algorithm was
considered a good candidate, since it was designed
specifically for the hardware (FPGAS).

HereBoy is a combination of the characteristics from
both Genetic Algorithms and Simulated Annealing. The

' Only those ES in which MU is greater than 1 are considered here.

binary chromosome (a string of 1s and 0Os), one of the
most important features of Genetic Algorithm, is utilized
as the data structure in HereBoy, for in principle this kind
of chromosome can be mapped to any problem domain.
The population only contains one individual, and
mutation is the only variation operator employed, which
is also the cases in Simulated Annealing [14]

In each step of iteration, the chromosome is mutated
by flipping bits and then evaluated. If the mutation leads
to a better individual than its parent, the offspring will be
retained; otherwise the algorithm discards this mutation
based on a possibility test. This means that sometimes a
worse chromosome will be maintained. This mechanism
allows the system to search for better solutions. [14]

It may be argued that HereBoy Algorithm is the same
as the random mutation GA or the 1+1-ES. The most
significant variation of HereBoy is that it honours a better
individual most of the time, but does not favour a better
one all the time: inferior offspring has a limited
opportunity to overwrite its superior parent individual.

For :each
Individual

v

1. Init —

[

2. Evaluate

|

3. Mutate

|

4. Evaluate
| I

v

Fig. 9. Flow Diagram of the Evolution
Algorithm Proposed

It is obvious that no sorting is required to perform a
HereBoy type algorithm. Inspired by this algorithm, a
new EA as follows was conceived:

1. Randomly initiate »n individuals;
2. Evaluate all of them;
3. Mutate every individual once to generate n offspring;

(Mutation rate p,, is fitness related, described below)

4. Evaluate all offspring;

5.1f an offspring (Fo) is better than its parent (Fp),
replace its parent with it.

6. Else if an offspring is worse than its parent, the
offspring has a probability p, to substitute its parent;

7. Else (when an offspring’s fitness is the same as its
parent), the offspring has a constant probability p,
(which is determined as an input parameter beforehand)
to substitute its parent;

8. Unless stopping criterion reached return to 3.

The flow chart of this algorithm is illustrated in Fig.
9. The main difference from the original HereBoy is that a
population with more than one individual is possible in
the proposed algorithm: HereBoy is a special case of this
algorithm which has only one individual in its
population.

Adaptive mutation rate has been shown to be efficient
for hardware evolution [15]: a mobile robot can adapt to
unpredictable environments with the help of an evolution
algorithm which employs a mutation rate defined
according to the normalized fitness. It was also suggestion
in [14] that the evolution would benefit from adaptive
mutation rate. Based on these findings, an adaptive
mutation rate p,, was employed in this work. It is defined
as:

pmin (pc<pmin)
pm = pc (pmin < pc < pmax) (2)
Prnax (Pe > Proax)

p. is calculated based on the individual’s current fitness
and the maximum fitness iven as:
f max, g

p.=p,(—fi 3)

Puin » P mae @and p! are parameters defined before

evolution. In general, p,,, multiplied by the number of
total molecules should be greater than or equal to 1 and
Dnax Should be equal to or less than 0.5.

p,, starts at high (normally p,,.) when the evolution
begins, and declines to p,,, as the process converges on
the final solution. This scheme allows the algorithm to
focus on searching for generally good solutions at
beginning and then fine tunes them to evolve the best
one.

The probability p, of a worse offspring replacing its
parent is governed by a similar rule:

p.= - @

max

p; is another input parameter, called the principle

maximum mutation rate. The other part of the product
which generates the p, is a fraction which will reduce from
1 to 0 as the run converges. So p, decreases as the fitness
of individual approaches the maximum.

p, is introduced to aid the avoidance of local fitness
maxima. With this mechanism, the algorithm can search
for better opportunities in its surrounding area when it is
trapped in a local maxima.

4.2 Top-level Hardware Modules in the IEHW

As shown in Fig. 10, there are 5 functional independent
top-level modules which implement the IEHW as a
whole.

All the genotypes of each individual are stored in the
Population module. This is implemented in the FPGA as
distributed RAM, for only one individual is manipulated
at any given time.

MAX Fitness

GenerationCount Genotype
A
v
RNG
» MUT
CEA » Population |«——

- EVAL

—— Genotype ———- Fitness —— Control Signals Other Signals

Fig. 10. Top-level Overview of the Intrinsic
Evolvable Hardware Platform

The Controller of EA (CEA) is the central
management component which supervises the entire
evolution process and all the other modules. The fitness
for all the individuals in the population is also stored in
this module. The EA is essentially the same as described
in section 4.1, with one exception: no adaptive mutation
rate is employed, although adaptive replacement rate of a
bad-offspring overwriting its better parent is used. The
CEA module is realized as a finite state machine (FSM).
It is obvious in Fig. 10 that the CEA has nothing to do
with any genotype signals, so it is a representation-
independent functional module.

RNG is a 64 bit Linear Feed-back Shift Register
(LFSR) (more details are available in the references [11]
and [12]), which is employed as a pseudo-Random
Number Generator [13]. If supplied, the seed of RNG will
also be saved in this module.

The main function of Mutation Module (MUT) is to
mutate a given genotype and latch the mutated genotype

to be used by the EVAL. This module reads in the
mutation rate and mutates molecules one by one until the
specified mutation number is met. This module is also
implemented as an FSM.

The core component of this IEHW is the Evaluation
Module (EVAL), where the Digital Organism resides. Its
main function is to evaluate the fitness of each individual.
This module feeds every possible input to the 2-bit
multiplier implemented by the evolved digital organism
and sums up the total correct bits. Finally, the result of
the subtraction of the total correct bits from the maximum
possible correct bits (which is 64 in this case) is the
fitness of this individual. The EVAL module is made up
from two FSMs: one is used to manage the digital
organism and the other is in charge of feeding inputs,
calculating correct output bits, the summary and the final
subtraction to generate the fitness output of this module.

Rather than a central bus, all the modules have their
dedicated input/output signals as shown in Fig. 10. This
feature improves the efficiency of the evolution process.

4.3 Execution Phase of the IEHW

After reset signal is pulsed (low) for one clock cycle, all
the modules, including all FSM and internal registers, are
all cleared to their initial states.

In this state, the IEHW will receive and latch any input
parameters if provided, otherwise the default parameters are
used.

When the start signal is activated by the host PC, the
CEA module will take all the responsibilities of the
IEHW.

Firstly, the population are initiated one by one,
evaluated and saved into Population: CEA signals the
MUT to mutate at the highest possible rate so all the
molecules in the genotype are randomly generated, then
EVAL evaluates it and propagates the fitness to CEA,
finally the CEA saves the fitness and signal the
Population module to store the new generated individual.
These individuals make up the O (first) generation.

Secondly, after the initial population are ready, the
main loop of evolution process begins: in each
generation, the CEA selects each of the individuals in the
Population and feeds it to the MUT. The mutated
genotype is then evaluated by the EVAI module, and the
fitness is again propagated back to CEA. If the mutated
one (offspring) is better than the original one (parent), or
with a probability p, a worse offspring substitutes its
parent, which means the CEA asks the Population to
store the mutated genotype; otherwise the content of
Population module is untouched. After all the individuals
have undertaken this procedure, a new generation is
created. The evolution will continue to process the next

generation unless the stop criterion, the specified fitness
has been reached, is fulfilled.

When the main loop of the evolution process
terminates, the best individual evolved is presented
through the Genotype pin, while its fitness and the
generation where this evolution stops are propagated out
via MAX_Fitness and GenerationCount respectively.

5 Conclusions and Future Work

The biological development model proposed in this
paper is capable of exhibiting the intrinsic highly fault-
tolerance feature similar to its living organism counterpart
when it is applied to real world application: the best
solution discovered was able to tolerate virtually any
transient damages.

Admittedly it is true that this model consumes more
resources for the 2-bit multiplier than would be required in
conventional majority voting systems. We feel that the
approach used is worthy of further study. The decentralized
nature of the circuits is an interesting aspect. The 2-bit
multiplier is just a proof of concept on a simple problem.
When this model is applied to more complex application,
development has the potential to be more efficient than
conventional approaches, just as the case in nature: human
beings are too complicated to be described in detail, while
DNA wisely encodes the develop procedure of a person. In
the meantime, built-in fault-tolerant features can be
expected in a generated system just as the situation
described in this paper. We hope that, because of its
development nature, this model can be applied to more
sophisticated systems without fundamental modification.

With the help of the IEHW platform described in this
paper, the evolution process is accelerated dramatically
compared to software or VHDL simulation.

In future, the module will be extended to explore more
possibilities, such as making full use of chemical signals
when dealing with state signals and unconstrained growth
world: At present, only the 2-lowest bits of chemicals are
used in NSG, ignoring the top 2 bits and new generated
chemicals will overwrite previous ones. Effort will be put
into the manipulation mechanism of chemicals, such as
introducing another kind of chemical behaving as energy
and some anisotropic chemicals. A circuit capable of a
particular function that is also able to grow and mature in
a confined area by its own presents an interesting topic for
future investigation.

In addition, the IEHW implementation will receive
more improvement, including incorporation of adaptive
mutation. With the IEHW, we can also carry out more
researches about the impacts of different parameters to the
evolution outcome.

References

[1] Lewis Wolpert, "Principles of Development" 2",
Chapter 1, Oxford University Press, 2002.

[2] H. Ball and F. Hardy, "Effects and detection of
intermittent failures in digital systems", 1969 FICC, AFIPS
Conf. Proc., vol. 35, pp.329-335.

[3] Canham, R. and Tyrrell, A.M., "An Embryonic Array
with Improved Efficiency and Fault Tolerance", 5th NASA
Conference on Evolvable Hardware, Chicago, pp 265-272,
July 2003.

[4] Gordon, T.G.W., Bentley, P.J., "Towards development
in evolvable hardware", NASA/DoD Conference on Evolvable
Hardware, 2002. Proceedings., pp. 241-250, 15-18 July
2002.

[5] Metta, G., Sandini, G., Konczak, J., "A developmental
approach to sensori-motor coordination in artificial
systems", IEEE International Conference on Systems, Man,
and Cybernetics 1998, 10/11/1998 - 10/14/1998, 11-14 Oct.
1998, Location: San Diego, CA USA, pp. 3388 — 3393,
vol.4.

[6] Julian F. Miller, "Evolving developmental programs for
adaptation, morphogenesis, and self-repair", Seventh
European Conference on Artificial Life, Lecture Notes in
Artificial Life, Vol. 2801, pp. 256-265, 2003.

[7] J. Miller and P. Thomson, "Cartesian genetic
programming", Lecture Notes in Computer Science, Vol.
1802, pp. 121-132, Poli, R., Banzhaf, W., Langdon, W.B.,
Miller, J. F., Nordin, P., Fogarty, T.C., (Eds.).

[8] Julian F. Miller, "Evolving a self-repairing, self-
regulating, French flag organism", GECCO 2004: Genetic and
Evolutionary Computation Conference, Seattle, WA, USA,
Proceedings, pp. 129-139, 2004

[9] X. Chen and S. L. Hurst, "A comparison of universla-
logic-module realizations and their application in the
synthesis of combinatorial and sequential logic networks",
IEEE Transactions on Computers, vol. C-31 pp. 140-147,
1982

[10] http://www.celoxica.com/
[11] P.H.R. Scholefield, "Shift Registers Generating
Maximum-Length Sequences", Electronic Technology,

pp.389-394, 10-1960.

[12] S.W. Golomb, "Shift Register Sequences", Holden-
Day, San Francisco, 1967.

[13] Peter Alfke, "Efficient Shift Registers, LFSR Counters,
and Long Pseudo-Random Sequence Generators", Xilinx
Application note, XAPP 052 (Version 1.1), July 7 1996.

[14] D. Levi, "HereBoy: A Fast Evolutionary Algorithm",
Proceedings of the 2nd NASA/DoD Evolvable Hardware
Workshop, IEEE Computer Society, Los Alamitos, Ca, July
2000.

[15] R. Krohling, Y. Zhou and A. Tyrrell, "Evolving FPGA-
based robot controller using an evolutionary algorithm", /st
International Conference on Artificial Immune Systems,
Canterbury, Sep 2003.

[16] Schwefel, H.-P. "Numerical Optimization of
Computer Models", Chichester: Wiley, 1981.

