Paper category: Genetic Programming

What bloat? Cartesian Genetic Programming on Boolean problems

Julian Miller
Schod of Computer Science University of
Birmingham, Birmingham, B152TT, UK
Telephone: +44 121 414 3710
Email: j.mill r@cs.bham.ac.uk14 3710
Email: j.mill er@cs.bham.ac.uk

Abstract

This paper presents an empiricd study of the
variation of program size over time, for a form of
Genetic Programming called Cartesian Genetic
Programming. Two main types of Cartesian genetic
proggamming are examined: one uses a fully
conneded graph, with no redundant nodes, while
the other dlows partial connededness and has
redundant nodes. Studies are reported here for
fitnessbased search and for a flat fitnesslandscape.
The variation of program size with generation does
not behave in a similar way to that reported in
other studies on standard Genetic Programming.
Depending on the form of Cartesian genetic
programming, it is found that there is ether very
weak program bloat or zero bloat. It is argued that
an important factor in the analysis of the change of
program length is neutral drift, and that if genotype
redundancy is present, the genetic neutral drift
simultaneoudly improves sarch and compresses
program code.

1 INTRODUCTION

In many reported forms of Genetic Programming (GP)
spedal measures need to be taken to counteract the tendency
of programs to rapidly grow in size over time. The latter is
usualy referred to as bloat. Uncontroll ed bloat leads to time
consuming fitnesseval uation and also reduces the dficiency
of the seach operators. Consequently researchers have
usualy imposed some form of parsimony presare to
counteract this effect. This paper describes the variation of
program size over time for a recently developed form of
graph-based genetic programming cdled Cartesian Genetic
Programming (CGP) [21][22].

The motivation for this paper grew out of the authors
observation that program bloat does not appear to accur in
CGP. In fact it is found that programs only increase in size
if itisnecessry to improve their fitness The paper sets out
to try to understand this fact. A number of questions were
immediately apparent. Does the imposition of a maximum
program size in CGP provide a compresson presaire that
counteracts bloat? Is the form of mutation that is employed
exerting a parsmony presare?

At the outset the authors intuition suggested that an
important consideration in answering these question was the
presence in CGP of genetic redundancy. In CGP there is a
genotype-phenotype mapping stage axd program nodes may
be specified in the genotype that do not code for anythingin
the phenotype (the actual program). Moreover, these
redundant nodes are not even evaluated during the
asesesment of a program's fitness The mutation operator
can switch nodes into and out of the phenotype during the
evolutionary process It has been shown e sewhere that the
presence of these redundant nodes considerably enhances
the ability of the evolutionary algorithm to seach
effedively [22][30]. To investigate this intuition it was
necessary to investigate the behaviour of a form of CGP in
which redundant nodes were diminated i.e fully-conneded
graphs. Attendant on this requirement was development of
another mutation operator, in addition to the simple point
mutation that would insert or delete program nodes. This in
turn meant that bath genotypes and phenotypes would have
to have variable size. The simplest way to investigate
whether point mutation was naturally parsimonious was to
examine the @se of a flat fitness landscape. Would the
evolutionary algorithm be biased toward small programs on
aflat landscape?It is these questions and intuitions that are
investigated and explored in this paper.

The plan of the papersis as follows. Sedion 2 gves a brief
survey of the program bloat phenomenon, and its relation to
non-coding regions. Sedion 3 gives a description of CGP
and its mutation operators. The experiments are described
in sedion 4. Sedion 5 lays out the experimenta findings.
Some analysis and discusson of the results and how they
relate to the behaviour of other GP paradigms is given in
Sedion 6. In Sedion 7 conclusions are given. The paper
concludes with a brief discusgon of further work in sedion
8.

2 RELATED WORK

The problem of the rapid growth of programs produced by
Genetic Programming is very well known and is generally
referred to as program bloat [1][2][4][8][10[11[17][18]
[27][28][29]. Unfortunately this growth in program size is
amost always due to the growth of pieces of sub-code that

Paper category: Genetic Programming

have little or no semantic dfect. Various ideas have been
proposed to explain this phenomenon. Origindly it was
viewed as hitchhiking [29] which viewed inactive ade
being propagated by crossover, by being attached to fitter
parents. Another theory was that bloat arose because it
provided a protedion from the deleterious effects of
crosover by increasing the number of crossover points that
have no semantic dfect on an individual [4][17][18][25].
Another argument put forward was that of removal bias
[27][28]. This uggested that there was a natural bias toward
large subtree growth because removal of the whole
redundant subtree would be disruptive, while enlarging the
inoperative inflated code would not change the fitnessof the
proggam. Many of the aguments have focussed on the
crossover operator though there isno clea reason why these
theories might not be similarly applied to mutation operators
also. There has been work done that suggests that subtree
crosover is particulary at fault and mutation to a smaller
extent [2].

Much work has focused on the intron view of bloat. Introns
are traneous pieces of code that do not contribute to
progam fitness One approach to alleviate the intron
problem has been to ddiberately insert introns, i.e. insert
explicitly defined introns [16]. In register machine ade GP
this cen have the dfea of automatically supressng the
growth of implicit introns. Recently however, work has
been done that suggests that program growth is not caused
by intron growth but rather intron growth is a consequence
of program growth. The program growth is linked to the
implicit biasin treebased GP toward deep crosover points
because disruption to subtrees nea to the program roa are
likely to be deleterious [15]. This fits with the findings in
[19] which showed that throughout the esolutionary run the
nodes closest to theroat hardly ever change from those in
the initial population. Posshly the most general argument
advanced is that "fitness causes bloat" which asserts that
program bloat occurs largely because there are many more
larger programs with higher fithess ® the smal initia
programs drift in this diredion [9][10[11[12][13]. This
theory has matured to the point that now such growth is
seen as an inevitable mnsequence of evolving variable
length program representations for two main reasons. 1)
search operators with no explicit length bias tend to sample
bigger programs (see above), and 2 competition within
populations favours longer programs as they can usualy
reproduce more accurately.

The presence of implicit introns in genetic programming is
amost universally regarded as bad, yet some reseachers
have agued that the spread o introns can actualy be
beneficial in that they provide a natural kind of code
compresson [17]. It was partly to alleviate the drawbacks of
implicit introns that they introduced explicitly defined
introns. However recet applications of this ideato tree
based sytems has been less siccessful, and it seems that
supressng ceatain types of implicit introns is more
beneficial to search [26]. One ealy finding has shown that
with genetic dgorithms, non-coding regions actually
improve the performance [14]. More recent studies have

indicated that introns can improve performance but only
with theimpasition of a parsimony function [5].

3 CARTESIAN GENETIC
PROGRAMMING

Cartesian Genetic Proggamming (CGP) was first formerly
proposed in [22]. It shares sme characteristics with Parallel
Disgtributed GP (PDGP) [24]. It independently originated
from work concerned with the design of digital circuits
using evolutionary algorithms [20].

In CGP a program is represented as a redanguar array of
nodes. The nodes represent any operation on the data seen at
itsinputs, and may implement any convenient programming
construct (if, switch, OR, * etc.). All the inputs, whether
primary data, node inputs, node outputs, or program outputs
are sequentidly indexed by integers. The functions of the
nodes are al so sequentialy indexed. The chromosome is just
alinea gtring o these integers. The ideais best explained
with a simple symbolic regresson example borrowed from
[8]. Fig 1 shows the genotype and the wrresponding
phenotype for a program which implements bah the
difference in volume between two boxes V; - V,, and the
sum of the volumes, V; + V, , where, V3 = X XoX3, Vo
=Y.Y,Ys. The partticuar inputs corresponding to the
dimensions of the two boxes Xi, X5, X3, Y1, Yo, Y3, are
labelled 0-5 and are seen on the left. The function set is
{0=plus, 1=minus, 2=multiply}. The functions are shown in
bold in the genotype and are seen indde the nodes. The
program outputs are taken from node outputs 12 and 13. V;
and V, are each re-used in the alculation of thetwo autputs.
Theinpus of columns of nodes can only be conneded to the
outputs (or program inputs) which are on the left. A node
may have itsimputs conneded to the output of another node
provided that the latter is no more than a cetain number of
columns back. This parameter is cdled levels-back. Using a
levels-back =1 forces maximum re-use of individual node
outputs but hampers large scale re-use of colledions of
nodes. On the other hand if levels-back = maximum number
of columns (and there is only a single row) unrestricted
connedivity of nodes is alowed. In this representation an
output of a node may not be mnneded to the inpu of
another node in the same @lumn. Primary inputs (0-5) are
all owed to conned to any node without restriction.

An important asped of the representation is that some genes
may not be expressed in the phenotype program. In CGP the
digtinction between non-coding genes and coding genes is
purely in whether at that particular instance the node genes
asciated with the node's output are active becuse the
node is conneded between the program inpus and outputs.
Genes can be made active by mutation at one point and then
later made inactive. It is important to note that inactive
genes are nat processed when the fitness of a program is
asessxd. Of course introns can gtill ocaur in the phenotype
but they do not appea to cause a probem.

Paper category: Genetic Programming

01230034262285275191009101892 12 13

@
o 2L M2 oL
1—1—*62— 9 19 12
2 3 0 s, | 91| 1=
3 0 4+ 7 57« |104g] . [13
4 5 13

12 L 7 1 8 2
=— 4+, [85 9 « 14
- 11
(b)

Figure 1. An example CGP genotype (a) and phenotype (b).
Note that the nodes in grey do not form part of the
phenotype.

In the example shown all the nodes have the same number
of inpus, this is a convenience not a fundamenta
requirement. Thus the representation could be readily
generalised to accommodate variable number of inputs and
outputs for each node. Since nodes do not have to he
conneded the number of nodes used can vary from 0 to the
maximum number available. Thus bounded variable length
programs are dlowed. One of the other advantages of this
representation of a program is that the chromosome
representation used is independent of the data type used for
the problem, as the chromosome @nsists of addresses where
datais gored. Point mutation is very simple; one merely has
to alow changes to the genes which resped either the
functional congtraints or the @nstraints imposed by levels-
back. Note that output connedions can aso be mutated (e.g.
12 and 13in Fig 1). In this dudy two aher forms of
mutation have been defined: insert-node and delete-node.
Insert-node sdleds a position a random and inserts a new
node with a randomly chosen function (from those all owed)
and randomly chosen input connedions. The delete-node
operator randomly selects a node and removes it. After
either operator is applied to the genotype the node output
numbers are incremented a deaemented to the right of the
inserted a removed node so that the graph structure is
disrupted aslittle asposshble. Thisisillustrated in Fig 2.

0123003426228527519|10/0 9(10L 892 12 13
012300342 8527519(9(09|9[1892 12 13

@
012300342 622852751|910(0 (9 1918|9p |12 13
012300342 70162285275110110 10 131 8|10 (13 14
(b)

Figure 2. Genotype before and after node deletion (a), and
before and after node insertion (b). Altered genes are
indicaed.

4 EXPERIMENTS

In this paper a speda case of CGP appropriate for Boolean
problems is employed where the data type is binary and the
network is alowed to be feed-forward only. The probem
chosen for this study is the threebit multiplier which
multiplies two threebit binary numbers and outputs the
corresponding six-bit binary number. The function set
chosen for the experiments was {AND, EXOR, |IF,

I F*}. All function nodes were assimed to have aity 3 (in
the @ase of AND and EXOR the third input was ignored). The
three input node | F with inpus A, B, C, implements the
following function: if C then B, else A. The function IF*
implements: if C then NOT B, else A. The threebit
multiplier problem was chosen for this dudy for two main
reasons. it is a very chalenging problem, and it requires a
moderate number of nodes (at least 21 using the above
function set).

All the eperiments performed in this paper used a single
row of nodes with levels-back set to the number of columns.
Two forms of Cartesian programs were investigated. The
first was the normal representation already described. The
other was fully-conrected. In this representation every node
is conneded to the node on the immediate left (excluding
the leftmost node which can only conned to the program
inputs). Thus a least one non-redundant node input was
conneded to its left neighbour. If this connedion was
mutated by point-mutation then one of the node inpus was
randomly chosen to ke the new left-neighbour connedion
and the other subjeded to the point mutation. This was
implemented so that connedions would be free to move
rather than remaining fixed throughout the esolutionary run.
If theinsert-node added a node j between successve nodes i
and k then j had to have an input conneded to the output of i
and the input of node k that had formerly been conneded to
the output of node i would then conned to j. All other nodes
would be conneded as before the node insertion was caried
out. Thus a fully-conneded graph would be obtained with
the most similarity to the original. If delete-node was
applied (so that node k was removed) then the remaining
graph (from node j rightwards) would move left and one of
inputs of node j would be randomly chosen to conned to i.
Clealy, if ether insert/delete-node operators were applied
then the number of columns would also be danged. Thus
variable length structures were amployed.

The evolutionary algorithm used was of (1+1) evolutionary
strategy. In each iteration a genotype was randomly chosen
with fithessequal or greater to the previous best (the new
parent). Thiswas then mutated to form the child. Acoording
to the mutation rate (2% was chosen for all experiments) a
certain number of genes would be mutated, and only 50% of
these genes underwent point-mutation. The remaining genes
chosen for mutation then underwent insert/delete-node
mutation with equal probability.

Paper category: Genetic Programming

5 RESULTS

In the first series of experiments the population was
initialised with fully conneded programs of 100 nodes.
Three scenarios were examined. Scenario 1 allowed only
fully conneded graphs with all three mutation types: point,
insert-node, delete-node. This is referred to as fully-
conneded/dl. Scenario 2 did not require that graphs after
theinitial population be fully-conneded . All threemutation
types were again used. The third scenario again did not
require graphs to be fully conneded after the initial
population but only employed point mutation. One hundred
runs were caried out in each scenario with 50000
generations. It is important to note that the fully-conneded
scenario the size of the program (number of active nodes) is
the same as the total number of nodes. In the sewmnd
scenario the total number of nodes can change (due to the
action of insert/delete-node mutation), however not all
nodes are active (i.e involved in the phenotype). In the last
scenario however the total number of nodes is fixed at 100
but the number of active nodes can vary between 0 and the
maximum value (100). Graphs showing the variation of
program Sze with generation for various Boolean functions

350
o 3001 scenario 2 total/all
3250
o 200
g | scenario 1: fully-connected/all
o 1504
g
5 1004 scenario 2: active/all
>
® 50

scenario 3:active/point
0 1000 20@0 30@0 40@0 50@0
generation

areshown in Figs 3,4 and 5.

Figure 3: Variation of program size with generation for
threebit multiplier under various mutation operators.

Observing the behaviour in scenario 1, it is e that thereis
a fairly dow bloat. It is much less than the nea quadratic
bloat familiar in certain forms of standard treebased GP
[13]. In scenario 2 there is a rapid deaease in phenotype
size which is followed by a dow increase. However the
genotype increases in size much more rapidly and without
an intial decrease. In scenario 3, again there is a rapid
deaease in phenotype size to an aimost constant value. In
scenario 2 there is a higher probability that a node deletion
will result in poorer fitness than a node insertion. If a
mutation results in an active node being deleted it will be
very disruptive to the phenotype. However inserting a node
may have no effed as it may not become active. Since
genotypes with more inactive nodes have the same fitness
thereis a chancethat it will be chosen to replace the parent
genotype.

300
ﬁ 250 - scenario 2: total/all
'S 200 |
8
'g 150 scenario 1: fully-connected/all
> 100
o | scenario 2; active/all
> 50

0 10000 20000 30000 40000 50000
generation

Figure 4: Variation of proggam size with generation for
even-five parity under various mutation operators.

300
scenario 2: total/all

250 -
g
& 200
Y scenario 1: fully-connected/all
N 150 |
[%2]
(]
& 100 -
(]
]) .

50 - scenario 2: active/all

0 ‘ ___scenario 3:active/point
0 10000 20000 30000 40000 50000
generation

Figure 5: Variation of program size with generation for 6-
mux under various mutation operators.

This may explain the genotype growth in scenario 2. In
other studies using CGP [30] [3]] it has been shown that by
asgsting neutral drift, genotype redundancy all ows a greater
exploration of phenotype space and hence leads to higher
fitness In scenario 2 the algorithm can increase the
redundancy by increasing the total length of the genotype
which increases the opportunity for neutral drift. In scenario
1, neutrd drift is gill posgble but only by increasing the
size of non-coding sedions of phenotype (rather like
implicit bloat in conventional treebased GP). In scenario 3,
where only the point mutation is operative, average program
size remained almost constant with time. In scenario 2 data
was colleded on the behaviour of the largest and smallest
eventua genotypes and their corresponding phenctype
lengths. This is shown in Figs 6 and 7. Note, data was
colleaed at each fitnessimprovement.

Paper category: Genetic Programming

n
(]
©
o
S
(0]
N
%)
]
o
2
o
c
]
O]
0 20000 40000
Generation

Figure 6: Variation of genotype size with generation for two
extremal runs under point, insert-node, and deete-node
mutation operators (scenario 2)

- 120

S

S 100

£

o 80

N

»n 60

g \

> 40

[e]

S 20

c

o 0 - ‘ :
0 20000 40000

Generation

Figure 7: Variation of phenotype size with generation for
two extremal runs under point, insert-node, and celete-node
mutation operators (scenario 2)

Figures 6 and 7 are quite revedling. In the run that
eventualy produced the largest genotype (black triangles)
the phenotype deaeases much more rapidly from its initial
size (100 nodes) than the other run. Consequently it became
even more probable that the node insertion operator would
be lessdisruptive than the deletion operator and hence more
redundant nodes would be inserted into the genotype and it
would begin to Hoat. In the experiments described above
the average fitness of the best in population was measured.
Theresultsare shown in Figure 8.

The average fitnessof theinitial populationis, of course, the
same in al scenarios (241.51, not shown). After 20000
generations differences between the three scenarios become
statisticdly significant. Scenario 3 gives the highest average
fitness scenario 2 is next and scenario 1is worst. Clealy
evolving fully-conneded graphs is consderably less
effedive than alowing genotypes that include redundant
nodes. Why should this be?It has been alrealy pointed aut
that the proportion of programs with a given fitness is
approximately constant for a wide range of program
lengthg[9][10][11][12][13]. Since the total number of
programs rises rapidly with length, the number of programs
with a given fithess must also increase rapidly. Thus one

should exped larger programs to ke favoured. If this
argument applies equally to graphs in CGP then one would
exped the size of al the graphs in the eperiments
described above to increase rapidly, and posshly with a
nea quadratic dependence on generation [13]. This clealy
does not happen. The fact that in scenario 3 the programs all
have an upper bound (100 nodes) does not appea to supress
program growth after the initia rapid drop (Figs 3 and 4).
Thereis gill plenty of room to grow from about 40 nodes,
yet program size remains approximately constant with time.

scenario 3: point

briirl]

scenario 1: fully-connected/all

aver age fitness of best

0 10000 20000 30000 40000 50000
generation

Figure 8: Variation of fithess with generation for threebit
multiplier under various mutation operators (error bars are +
standard deviation)

In moleaular evolution in biology Kimura [7] has observed
that nealy all mutations result in genotypes with the same
fitness and that genetic drift is a large causative factor for
large phenotypic diversity. The experimental results shown
here support the idea that neutrality is also a factor in the
tendency for program length to increase with evolutionary
step. It may be that the genetic drift that leads to fitness
improvement is ® important that in Cartesian GP external
bloat occurs in the redundant code thus automaticdly
compressng the phenotypic code (scenarios 2 and 3 above).
It might however, be agued that perhaps the point mutation
operator introduced a parsimony presaire that counteracted
the natural tendency of programs to boat. In order to test
this and further shed light on the above arguments, the
experiments were run again, but this time with fitness
switched off (the fithess function returned 1 for all
genotypes). Theresultsare shown in Fig 9.

Paper category: Genetic Programming

1101 scenario 2:to‘t31@,_a..._,~w
® cndealiens o o

90 scenario 1: fully-connected/all

70

50 scenario 3:active/point

average size

30 . .
scenario 2: active/all

10 + ‘ ‘ ‘
0 500 1000 1500 2000

Generation

Figure 9: Variation of program size with generation under
various mutation operators for flat fithesslandscape

Firgly in the experiments that involve variable length
genotypes (scenarios 2 and 3) the size of the genotype varies
around the initial figure, though there is a dight tendency
for the size to very dowly increase. The cause of thisisn't
clear, it may be analogous to Brownian motion. It could also
be due to the dlight non-randomnessin the pseudo-random
number generator used (evolution with flat fitnesslandscape
is very senditive to this). In scenarios 2 and 3 once again a
rapid contraction of phenotype size occurs. Subsequently
the size tends to a constant value. In the case of scenario 3
this value is approximately 35 nodes. In scenario 2 this
value is approximately 30 nodes. Immediately below the
plot of active size in scenario 3 is ®en the plot of average
active size under point mutation (triangular symbols) when
the populations are not initidised to programs with 100
fully-conneaed nodes (instead 100 nodes is the maximum
dlowable size). Clealy even when initialised to fully-
conneded nodes the point mutation operator quickly
reduces the average size of the phenotypes to that of
randomly initidised populations. Since the average size
remains approximately constant it can be inferred that point
mutation is an unbiased operator and cbes not exert any
parsimony presaure on randomly initialised populations.

The minimum number of nodes required to kuild the three
bit multiplier using the function set {AND, EXOR, |F,
| F*}appeasto be 21 [23]. Thusin al the experiments so
far described the all owed number of nodes was grealy more
than is required. It was interesting to examine how the
program size might evolve under point mutation if initially
the average size was lessthan 21. Larger programs would
then be favoured by the algorithm as they would be the
correlated with an increase in fitness

Two further experiments were caried out (each 1 runs
and 4% mutation) to examine the average size of the best in
population. A higher mutation rate was chosen because 2%
would have only allowed one gene in each population
member to be mutated per generation. In one set of runsthe
initial population consisted of 30 fully-conneded nodes. In
the other the population was initialised randomly with a

maximum size of 30 nhodes. This gave an average phenotype
size of 15.21 nodes. Theresultsare plotted in Fig 10.

32
o 27
N -
o initially fully connected
o 22 P R
© —v—_ o —
5 o
g

initially not fully connected
12 + T T

0 50000 100000 150000 200000

Generation

Figure 10: Variation of program size with generation under
point mutation and different initialisation conditions with a
maximum of 30 nodes

Once again a rapid deaease in average size is observed
when the programs are initialised to be 30 nodes. Its
smallest average size however remains a little larger than
when the population is randomly initiaised. In bah
scenarios thereisa slow increase in average program length
that appeasto level off at about 22 nodes.

6 DISCUSSION

The view that sees neutral drift as a causative factor in
program bloat has receved littl e attention in the literature.
Programs that have varying amounts of junk code within
them all have the same fithess Evolutionary algorithms,
unli ke grict hill climbers (which don't exhibit bloat [13]), do
not typically demand that promotable programs (to the next
generation) have an improved fithess thus they may accept
equally good solutions (i.e fithessneutral) or even dightly
worse solutions. Consequently, if there is a medhanism that
can crede neutral solutions a genetic drift process will
occur, particularly during periods of no fithessimprovement
(which is when implicit bloat cen be & its worse [16]). In
program representations that do not distinguish genotype
from phenotype (i.e standard treebased GP) this process of
drift must largely occur by the insertion of junk code. In
other work [30][31]] it has been shown that genetic drift is
highly beneficial in CGP as it allows constant innovation
and removes genetic stagnation. This is also observed in
other systems [3][6]. However genetic drift with implicit
introns appeas to cause stagnation and supresses constant
innovation. One advantage of making a distinction between
genotype and phenotype is that the eploratory nature of
genetic drift can occur mainly in fitness neutral space and
only occasionally affed phenctype space This means that
thereis no pendlty associated with the neutral exploration as

Paper category: Genetic Programming

it is never evaluated when the fithess of a program is
caculated. The agument that program bloat provides a
protedive mechanism for the destructive dfects of both
crosover and mutation (i.e. it is a good thing) applies
equally well to explicit redundancy. Thus one can take
advantage of it in CGP without paying the pendty of
evaluating it. To some etent one can see fully-
connededness as an invitation for program bloat and it is
redly difficult to see any virtues it may have over
representations that allow explicit code redundancy.

Standard CGP (without insert/delete-node operators) has a
bounded program size. However this does not seem to be a
large factor in program sze suppresson as in a flat fitness
landscape the average size of the programs is always a
fraction of the maximum bound (seeFigs 9 and 10). Clealy
it would be a problem in a fithessbased seach if the bound
chosen was less than the minimum size to construct a
corred program. A suggested remedy for thisis given in the
further work sedion.

7 CONCLUSIONS

This paper has briefly surveyed the published literature on
the evolution of program size axd contrasted the reported
behaviour with that of new form of genetic programming
cadled Cartesan Genetic Programming. Experiments
performed indicae that implicit intron growth is not a
problem and no measures need to be taken to suppressit (at
least for some Boolean problems). Evidence has been
provided of the unbiased nature of the mutation operator by
examining the behaviour of the programs under evolution in
a flat fitnesslandscape. The central concept of the work is
that all owing unconneded program nodes is very useful and
improves the dfectiveness of the search without having to
be evaluated in the fitness function. Such representations
benefit from explicit introns which alow progam
exploration through genetic drift.

8 FURTHER WORK

The question as to which kinds of explicit introns are best
and why, and their role in suppressng bloat and all owing
innovation neeads more detailed investigation. Variable
length program representations have an obvious advantage
over bounded length representations (standard CGP) in that
one can start the evolution with reatively small programs
that consume little memory and are quick to process
However the work of this paper definitely implies that
allowing mutation operators to be the medanism for this
length variability is liable to produce poorer fitness
improvement and extra processng. Ingead one uld
introduce length variability by inspeding the phenotypic
length and, if it became "too close" to genotypic length, then
increase genotypic length by randomly introducing program
nodes. The investigation of thisremains for the future.

Acknowledgments

Many thanks to Tina Yu, Jon Rowe axd espedally Nick
McPhee for ther comments and suggestions for
improvement.

References

1. L. Altenberg (1994). Emergent phenomena in genetic
programming. In A. V. Sebald and L. J. Fogd (eds.),
Evolutionary Programming: Proceedings of the Third
Annual Conference, 233241. World Scientific
Publi shing.

2. P. J Angdine (1998). Subtree cosover causes bloat.
InJ. R. Koza ¢ a (eds.), Genetic Programning 1998
Procealings of the Third Annual Conference, 745752,
Morgan Kaufmann.

3. L. Barnett (1998). Ruggedness and Neutrdity - the
NKp family of Fitness Landscapes. In: C. Adami, R.
Belew, H. Kitano, and C. Taylor (eds.) Proceedings of
the Sxth International Conference on Artificial Life,
18-27. MIT Press

4. T. Blickle and L. Thide (1994. Genetic programming
and redundancy. In J Hopf (ed.), Genetic Algorithms
within the Framework of Evolutionary Computation
(Workshop at KI-94), Saarbriicken), 33-38. Max-
Planck-Ingtitut fir Informatik (MPI-1-94-241).

5. D. S Burke, K. A. De Jong, J. J. Grefenstette, C. L.
Ramsey, and A. S. Wu (1998). Putting More Genetics
into Genetic Algorithms. Evolutionary Computation,
Val. 6, No. 4, 387-410.

6. M. A. Huynen (1996). Exploring Phenotype Space
through Neutral Evolution. Journal of Molecular
Evolution Val. 43, 165-169.

7. M. Kimura (1969. Evolutionary Rate at the Molealar
Level. Nature Vol. 217. 624-626.

8. J R. Koza (1992). Genetic Programning: On the
Programning o Computers by Means of Natural
Slection. Cambridge, MIT Press

9. W. B. Langdon (1998). The evolution of size in
variable length representations. In 1998 |EEE
International Conference on Evolutionary
Computation, 633-638. IEEE Press

10. W. B. Langdon, and R. Poli (1998. Fitness Causes
Bloat: Mutation. In W. Banzhaf, R. Pdli, M.
Schoenauer, and T. C. Fogarty (eds.), EuroGP'98: First
European workshop an Genetic Programnming, 37-48.
Springer-Verlag.

11 W. B. Langdon, and R. Poli (1998. Why Ants are
Hard. In J. R. Koza ¢ al (eds.), GP'98: Proceedings of
the Third Annud Genetic Programmming Conference,
193201. Morgan Kaufmann.

12. W. B. Langdon, T. Soule, R. Pali, and J. Foster (1999.
The Evolution of Size and Shape. In L Spedor, W. B.
Langdon, U-M. OReilly, P. J Angdine (eds),

Paper category: Genetic Programming

13

14.

15

16.

17.

18.

19

20.

21,

22,

Advances in Genetic Programming Vol. 3, 163-190.
MIT Press

W. B. Langdon (2000). Quadratic Bloat in Genetic
Programming. In D. Whitley, D. Goldberg, E. Cantu-
Paz L. Spedor, |. Parmee and H-G Beyer, GECCO-
200Q Proceedings of the Genetic and Evolutionary
Computation Conference, 451-458. Morgan Kaufmann.

J R Levenick (1991). Inserting introns improves
genetic algorithm success rate: Taking a aie from
biology. In R. K. Belew and L. B. Booker (eds.),
Procealings of the Fourth International Conference on
Genetic Algorithms, 123-127. Morgan Kaufmann.

S. Luke (2000). Code growth is Not Caused by Introns.
In GECCO-2000: Late Breaking Papers, 228235
Morgan Kaufmann.

P. Nordin, F. Francone, and W. Banzhaf (19995.
Explicity defined introns and destructive aossover in
genetic proggamming. In Peter J. Angdine and K. E.
Kinnea X. (eds.), Advances in Genetic Programming
Val. 2, 111-134. MIT Press

P. Nordin, and W. Banzhaf (1995. Complexity
compresson and evolution. In L. Esheman (ed.),
Genetic Algorithms: Proceedings of the Sxth
International Conference(lCGA95), 310-317. Morgan
Kaufmann.

N. F. McPhee ad J D. Miller (1995. Accurate
replication in genetic proggamming. In L. Esheman
(ed.), Genetic Algorithms: Procealings of the Sixth
International Conference (ICGA95), 303-309. Morgan
Kaufmann.

N. F. McPhee ad N. J. Hopper (1999 Analysis of
genetic diversity through population history, In W.
Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V.
Honavar, M. Jakiela, and R. E. Smith: Proceedings of
the Genetic and Evolutionary Computation Conference
(GECC099), 11121120. Morgan Kaufmann.

J. F. Miller, P. Thomson, and T. C. Fogarty (1997).
Designing Eledronic Circuits Using Evolutionary
Algorithms. Arithmetic Circuits; A Case Study. In D.
Quagliarella, J. Periaux, C. Poloni and G. Winter (eds.),
Genetic Algorithms and Evolution Srategies in
Engineering and Computer Science: Recent
Advancements and Industrial Applications, chapter 6.
Wiley.

J. F. Miller (1999. An empiricd study of the dficiency
of learning Bod ean functions using a Cartesian Genetic
Programming Approach, In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R.
E. Smith (eds), Procealings of the Genetic and
Evolutionary Computation Conference (GECCO099),
11351142. Morgan Kaufmann

J. F. Miller and P. Thomson (2000). Cartesian Genetic
Programming. In R. Pali, W. Banzhaf, W. B. Langdon,
J. F. Miller, P. Nordin, T. C. Fogarty, (eds.),Third
European Conference on Genetic Programmning.

23.

24,

25.

26.

27.

28.

20.

30.

31

Ledure Notes in Computer <cience Vol. 182, 121-
132

J. F. Miller, D. Job, and V. K. Vasslev (2000.
Principles in the Evolutionary Design of Digita
Circuits-- Part I. Journal of Genetic Programning and
Evolvable Machines, Vol. 1, No. 1, 8-35. Kluwer
Academic.

R. Pali, (1997. Evolution of graph-like programs with
paralle distributed genetic programming. In T. Back
(ed.), Genetic Algorithms: Proceeadings of the Seventh
International Conference (ICGA96), 346-353. Morgan
Kaufmann.

J. Rosca (1996. Generdlity versus Sze in genetic
progamming. In J R. Koza et a (eds), Genetic
Programning 19%: Proceadings of the First Annual
Conference, 381-387. MIT Press

P. W. Smith and K. Harries (1998. Code growth,
explicitly defined introns, and aternative seledion
schemes. Evolutionary Computation, Vol. 6, No. 4,
339-360.

T. Soule, J. A. Foster, and J. Dickinson (1996). Code
growth in genetic proggamming. In J. R. Koza et d
(eds.), Genetic Programning 1996 Proceedings of the
First Annual Conference, 215-223. MIT Press

T. Soule (1998. Code Growth in
Programming. PhD thesis, University of Idaho.

W. A. Tackett (1994). Recombination, Selection, and
the Genetic Congtruction of Computer Programs. PhD
thesis, University of Southern California.

V. K. Vasslev, and J. F. Mill er (2000). The Advantages
of Landscape Neutrality in Digital Circuit Evolution. In
J. F. Miller, A. Thompson, P. Thomson, and T. C.
Fogarty T. C. (eds), Proceedings of the Third
International Conference on Evolvable Systems. From
Biology to Hardware (ICES2000, Ledure Notes in
Computer Science, Vol. 1801, 252-263. Springer

Genetic

T. Yu, and J F. Miller (2000). Neutraity and
Evolvability of a Boolean Function Landscape. In J. F.
Miller, M. Tomassni, W. Langdon (eds),
EuroGP'200Q0 Fourth European Conference on
Genetic Programning. Ledure Notes in Computer
Science Vol. 2038, 204-217. Springer-Verlag.

