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Glossary

Evolutionary algorithm A computer algorithm loosely inspired by Dar-
winian evolution

Generate-and-testThe process of generating a potential solution to a com-
putational problem and testing it to see how good a solutias. i The idea
behind it is that no human ingenuity is employed to make gabatisns more
likely.

GenotypeA string of information that encodes a potential solutiostamce
of a problem and allows its suitability to be assessed

Evolution in materio The method of applying computer controlled evo-
lution to manipulate or configure a physical system

Liquid Crystal Substances that have properties between those of a liquid
and a crystal

1. Definition of the Subject and its Importance

Evolution in materio refers to the use of computers runniegrch algo-
rithms, called evolutionary algorithms, to find the valuésaviables that should
be applied to material systems so that they carry out usefupatation. Ex-
amples of such variables might be the location and magnifisleltages that
need to be applied to a particular physical system. Evaiuitiomaterio is
a methodology for programming materials that utilizes jptaiseffects that
the human programmer need not be aware of. It is a generalodwtigy
for obtaining analogue computation that is specific to therdd problem do-
main. Although a form of this methodology was hinted at inwwak of Gor-
don Pask in the 1950s it was not convincingly demonstratdd 1996 by
Adrian Thompson, who showed that physical properties ofdalichip could
be exploited by computer controlled evolution. This aetidescribes the first
demonstration that such a method can be used to obtain spawiogue com-
putation in a non-silicon based physical material (liquigistal). The work is
important for a number of reasons. Firstly, it proposes a&egdmmethod for
building analogue computational devices. Secondly itaxglhow previously
unknown physical effects may be utilized to carry out corapans. Thirdly,
it presents a method that can be usedliszoveruseful physical effects that
can form the basis of future computational devices.

2. Introduction
Physical Computation

Classical computation is based on a mathematical model rapatation
based on an abstract (but physically inspired) machinedal Turing Ma-
chine [1]. A Turing machine is a machine that can write or esnbols on a
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possibly infinite one dimensional tape. Its actions arerd@teed by a table of
instructions that determine what the machine will write loa tape (by moving
one square left or right) given its state (stored in a stajester) and the sym-
bol on the tape. Turing showed that the calculations thakdcloe performed

on such a machine accord with the notion of computation irheragatics. The
Turing machine is an abstraction (partly because it usessilgy infinite tape)

and to this day it is still not understood what limitationsestensions to the
computational power of Turing’s model might be possiblengsieal physi-

cal processes. Von Neumann and others at the Institute feaufmbd Study at
Princeton devised a design for a computer based on the ifléasing that has

formed the foundation of modern computers. Modern compuez digital in

operation. Although they are made of physical devices fiansistors), com-
putations are made on the basis of whether a voltage is alvdvelawv some

threshold. Prior to the invention of digital computers théave been a vari-
ety of analogue computing machines. Some of these wereypmethanical

(e.g. an abacus, a slide-rule, Charles Babbage's differengine, Vannevar
Bush’s Differential Analyser) but later computing machingere built using

operational amplifiers [2].

There are many aspects of computation that were delibgriggedred by
Turing in his model of computation. For instance, speedgrmmability,
parallelism, openess, adaptivity are not considered. paedat which an op-
eration can be performed is clearly an important issue sineeuld be of little
use to have a machine that can calculate any computablednrmit takes an
arbitrarily large amount of time to do so. Programmabil#yanother issue that
is of great importance. Writing programs directly in thenfoof instruction
tables that could be used with a device based on a Turingrsragty tedious.
This is why many high-level computer languages have beeise®vThe gen-
eral issue of how to subdivide a computer program into a nurabparallel
executing processes so that the intended computationrisd&ut as quickly
as possible is still unsolved. Openness refers to systeansdn interact with
an external environment during their operation. Openreesghibited strongly
in biological systems where new resources can be added awvesheither by
an external agency or by the actions taken by the systent. itdelaptivity
refers to the ability of systems to change their charadiesisn response to an
environment.

In addition to these aspects, the extent to which the uniderlphysics
affects both the abstract notion of computation and itstdtality has been
brought to prominence through the discovery of quantum caatjpn, where
Deutsch pointed out that Turing machines implicitly useiagstions based on
physics [3]. He also showed that through ‘quantum paral&licertain com-
putations could be performed much more quickly than on idaksomput-
ers. Other forms of physical computation that have recdyggn explored are:
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reaction-diffusion systems [4], DNA computing [5] [6] anghshetic biology
[7].

In the UK a number of Grand Challenges in computing reseaavie been
proposed [8], in particular ‘Journeys in Non-Classical Qaomation’ [9] [10]
seeks to explore, unify and generalize many diverse na@siclal computa-
tional paradigms to produce a mature science of computation

Toffoli argued that ‘Nothing Makes Sense in Computing Exéephe Light
of Evolution’ [11]. He argues firstly that a necessary but sufficient condi-
tion for a computation to have taken place, is when a novedtfons is pro-
duced from a fixed and finite repertoire of components (i.giclgates, protein
molecules). He suggests that a sufficient condition regumtention That is
to say, we cannot argue that computation has taken placesualsystem has
arisen for a higher purpose (this is why he insists on inbenéis being a pre-
requisite for computation). Otherwise, almost everythisgarrying out some
form of computation (which is not a helpful point of view). U$a Turing
machine does not carry out computations unless it has besrgmnmmed to
do so, and since natural evolution constructs organismtwe an increased
chance of survival (the higher ‘purpose’) we can regard tlasnsarrying out
computations. It is in this sense that Toffoli points to thadamental role of
evolution in the definition of a computation as it has prodi@aimals with the
ability to have intention.

This brings us to one of the fundamental questions in contiputa How
can we program a physical system to perform a particular coatipn? The
dominant method used to answer this question has been towdregic gates
and from these build a von Neumann machine (i.e. a digitalpzder). The
mechanism that has been used to devise a computer programmt@uat a par-
ticular computation is the familiar top-down design pra;eshere ultimately
the computation is represented using Boolean operationsording to Con-
rad this process leads us to pay "The Price of Programmglili2], whereby
in conventional programming and design we proceed by exwucdhany of
the processes that may lead to us solving the problem at Hdatliral evo-
lution does not do this. It is noteworthy that natural evioluthas constructed
systems of extraordinary sophistication, complexity amhputational power.
We argue that it is not possible to construct computatiogatesns of such
power using a conventional methodology and that completwsoé systems
that directly utilize physical effects will require somerio of search process
akin to natural evolution together with a way of manipulgtthe properties of
materials. We suggest that some form of evolution ought tarbappropri-
ate methodology for arriving gghysicalsystems that compute. In this chapter
we discuss work that has adopted this methodology. We celldtution in
materio.
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Evolutionary algorithms

Firstly we propose that to overcome the limitations of a dogvn design
process, we should use a more unconstrained design teehtligtiis more
akin to a process of generate-and-test. However a guidedhsezethod is
also required that spends more time in areas of the searcle $pat confer
favorable traits for computation. One such approach is #eeai evolution-
ary algorithms. These algorithms are inspired by the Daamirtoncepts of
survival of the fittest and the genetic inheritance of infation. Using a com-
puter, a population of randomly generated solutions isesyatically tested,
selected and modified until a solution has been found [13—-15]

As in nature, a genetic algorithm optimizes a populationndividuals by
selecting the ones that are best suited to solving a probtehalowing their
genetic make-up to propagate into future generations. titpally guided
only by the evolutionary process and often contains verytdidhdomain spe-
cific knowledge. Although these algorithms are bio-ingjr is important
that any analogies drawn with nature are considered onlpasgies.

Their lack of specialization for a problem makes genetioadgms ideal
search techniques where little is known about a problem. oAg ks a suit-
able representation is chosen along with a fithess fundtianatilows for ease
of movement around a search space, a GA can search vastprepkces
rapidly. Another feature of their behavior is that providadt the genetic rep-
resentation chosen is sufficiently expressive the algorithn explore potential
solutions that are unconventional. A human designer ndyrhak a set of pre-
defined rules and strategies that they adopt to solve a pnoblese precon-
ceptions may prevent trying a new method, and may prevemdsigner using
a better solution. A genetic algorithm does not necessatijyire such domain
knowledge. Evolutionary algorithms have been shown to bepstitive or
surpass human designed solutions in a number of differeaisarThe largest
conference on evolutionary computation called GECCO hasanal session
on evolutionary approaches that have produced human citivpetientific
and technological results. Moreover the increase in coatipmal power of
computers makes such results increasingly more likely.

Many different versions of genetic algorithms exist. Vadas in repre-
sentations and genetic operators change the performancacttristics of the
algorithm, and depending on the problem, people employ i@tyaof modi-
fications of the basic algorithm. However, all the algorighfollow a similar
basic set of steps.

Firstly the numbers or physical variables that are requicedefine a po-
tential solution have to be identified and encoded into a dgpeesentation
that can be manipulated inside a computer program. Thidasreel to as the
encoding step. The representation chosen is of crucialrtapee as it is pos-
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sible to inadvertedly choose overly constrained represiemis which limits
the portions of the space of potential solutions that willcbesidered by the
evolutionary algorithm. Generally the encoded informatie referred to as
a genotype and genotypes are sometimes divided into a nuohiseparate
strings called chromosomes. Each entry in the chromosaring & an allele,
and one or more of these make up a gene.

The second step is to create inside the computer a numbedagemdently
generated genotypes whose alleles have been chosen widihnumrobabil-
ity from the allowed set of values. This collection of gemsy is called a
population.

In its most basic form, an individual genotype is a singleoamosome made
of 1s and Os. However, it is also common to use integer andrftpabint
numbers if they more appropriate for the task at hand. Coatibins of differ-
ent representations can also be used within the same choomosnd that is
the approach used in the work described in this article. Aleatrepresenta-
tion is used, it should be able to adequately describe theidhudl and provide
a mechanism where its characteristics can be transferreduie generations
without loss of information.

Each of these individuals is then decoded into its phenotipeoutward,
physical manifestation of the individual and tested to sa& tvell the candi-
date solution solves the problem at hand. This is usuallymed as a number
that is referred to as th@nessof the genotype. Typically it is this phase in a
genetic algorithm that is the most time consuming.

The next stage is to select what genetic information wilcgex to the next
generation. In nature the fitness function and selectioessentially the same
- individuals that are better suited to the environment iserto reproduce
and pass on their genes. In the genetic algorithm a procadwapplied to
determine what information gets to proceed.

Genetic algorithms are often generational - where all tldepolpulation is
removed before moving to the next generation, in naturegigsess is much
less algorithmic. However, to increase the continuity dbimation between
generations, some versions of the algorithm use elitisneravthe fittest indi-
viduals are always selected for promotion to the next geioeraThis ensures
that good solutions are not lost from the population, butatyrhave the side
effect of causing the genetic information in the populationconverge too
quickly so that the search stagnates on a sub-optimal gpluti

To generate the next population, a procedure analogoustalseproduc-
tion occurs. For example, two individuals will be selected shey will then
have their genetic information combined together to predihe genotype for
the offspring. This process is called recombination orswusr. The genotype
is split into sections at randomly selected points callezs®over points. A
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“simple” GA has only one of these points, however it is poestio perform
this operation at multiple points.

Sections of the two chromosomes are then put together to onew in-
dividual. This individual shares some of the charactesstf both parents.
There are many different ways to choose which members ofdpalation to
breed with each other, the aim in general is to try and ensatdit individuals
get to reproduce with other fit individuals. Individuals daenselected with a
probability proportional to their relative fithess or seédstthrough some form
of tournament, which may choose two or more chromosomesdbra from
the population and select the fittest.

In natural recombination, errors occur when the DNA is splid combined
together. Also, errors in the DNA of a cell can occur at anyetiomder the
influence of a mutagen, such as radiation, a virus or toxienite. The ge-
netic algorithm also has mutations. A number of alleles akected at random
and modified in some way. For a binary GA, the bit may be flipped, real-
numbered GA a random value may be added to or subtracted fiprévious
allele.

Although GAs often have both mutation and crossover, it Ssjiile to just
to use mutation. A mutation only approach has in some casas demon-
strated to work, and often crossover is seen as a macro putagerator -
effectively changing large sections of a chromosome.

After the previous operations have been carried out, theindiwiduals in
the population are then retested and their new fithess scaladated. Even-
tually this process leads to an increase in the averageditfdbe population,
and so the population moves closer toward a solution. Thie®f test, select
and reproduce is continued until a solution is found (or sother termination
condition is reached), at which point the algorithm stogse performance of a
genetic algorithm is normally measured in terms of the nunobevaluations
required to find a solution of a given quality.

Evolution in materio: the historical background

It is arguable that ‘evolution in materio’ began in 1958 ie thiork of Gor-
don Pask who worked on experiments to grow neural structusegy elec-
trochemical assemblages[16—19]. Gordon Pask’s goal waetie a device
sensitive to either sound or magnetic fields that could perfsome form of
signal processing - a kind of ear. He realised he needed ensyhat was rich
in structural possibilities, and chose to use a metal swiutiUsing electric
currents, wires can be made to self-assemble in an acidiecagunetal-salt
solution (e.g. ferrous sulphate). Changing the electritetus can alter the
structure of these wires and their positions - the behavidh® system can
be modified through external influence. Pask used an arraleciredes sus-
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pended in a dish containing the metal-salt solution, anddptyang current
(either transiently or a slowly changing source) was ablbuitd iron wires
that responded differently to two different frequenciessotind- 50Hz and
100Hz.

Resistance capacitance or

o A ionic resistance linkage
to energy

?)
Amplifying /

servomechanism
elements.

/519ncN network forming

i in malleable material

G

Thread structures forming in malleable material Note: A = Amp

Figure 1. Pask’s experimental set up for growing dendritic wires imdas sulphate solution
[17]

Pask had developed a system whereby he could manually taimire
formation in such a way that no complete specification hadet@iken - a
complete paradigm shift from previous engineering teahesgwhich would
have dictated the position and behavior of every compometfis system. His
training technique relied on making changes to a set oftmsisand updating
the values with given probabilities - in effect a test-ramtipmodify-test cycle.
We would today recognise this algorithm as some form of diaary, hill
climbing strategy - with the test stage as the fitness evaluat

In 1996 Adrian Thompson started what we might call the moéearof evo-
lution in materio. He was investigating whether it was plolesto build work-
ing electronic circuits using unconstrained evolutionfgetively, generate-
and-test) using a re-configurable electronic silicon chiped an Field Pro-
grammable Gate Array (FPGA). Carrying out evolution by dafinconfigu-
rations of actual hardware components is knowrné&@nsic evolution. This
is quite possible using FPGAs which are devices that haveoaltmensional
array of logic functions that a configuration bit string deBrand connects to-
gether. Thompson had set himself the task of evolving aaligitcuit that
could discriminate between an applied 1kHz or 10kHz apmigdal)[20, 21].
He found that computer controlled evolution of the configgrbit strings
could relatively easily solve this problem. However, whendnalyzed the
successful circuits he found to his surprise that they waibtkeutilizing subtle
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electrical properties of the silicon. Despite painstalanglysis and simulation
work he was unable to explain how, or what property was betitigad. This
lack of knowledge of how the system works, of course, pressbomans from
designing systems that are intended to exploit these sabtle&eomplex physi-
cal characteristics. However, it does not prevent exgloitathrough artificial
evolution. Since then a number of researchers have deratetthe viability
of intrinsic evolution in silicon devices [21-27].

The termevolution in materiovas first coined by Miller and Downing [28].
They argued that the lesson that should be drawn from the wfdil]is that
evolution may be used to exploit the properties of a widegeaof materials
than silicon.

In summary, evolution in materio can be described as:

Exploitation, using an unconstrained evolutionary aldwni, of the non-linear

properties of a malleable or programmable material to per#desired function
by altering its physical or electrical configuration.

Evolution in materio is a subset of a research field known abvalile hard-
ware. It aims to exploit properties of physical systems witlch fewer pre-
conditions and constraints than is usual, and it delibsr&ies to avoid paying
Conrad’s ‘Price of Programmability’. However, to get acctsphysically rich
systems, we may have to discard devices designed with hunsgnapnming
in mind. Such devices are often based on abstract idealiiabf processes
occurring in the physical world. For example, FPGAs are waved as digi-
tal, but they are fundamentally analogue devices that haga bonstrained to
behave in certain, human understandable ways. This meansithinsically
complex physical processes are carefully manipulatedpesent extremely
simple effects (e.g. a rapid switch from one voltage leveanother). Un-
constrained evolution, as demonstrated by Thompson, sifomnthe analogue
properties of such devices to be effectively utilized.

We would expect physically rich systems to exhibit nondinproperties -
they will be complex systems. This is because physical Bysgenerally have
huge numbers of parts interacting in complex ways. Argydilynans have
difficulty working with complex systems, and the use of etiolu enables us
to potentially overcome these limitations when dealingwsiich systems.

When systems are abstracted, the relationship to the @hysicld becomes
more distant. This is highly convenient for human desigmégre do not wish
to understand, or work with, hidden or subtle properties afarials. Exploita-
tion through evolution reduces the need for abstractioit,aspears evolution
is capable of discovering and utilizing any physical effeittcan find. The
aim of this new methodology in computation is to evolve splggiirpose com-
putational processors. By directly exploiting physicadteyns and processes,
one should be able to build extremely fast and efficient cdatfmnal devices.
It is our view that computer controlled evolution is a unsarmethodology
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for doing this. Of course, Von Neumann machines (i.e. digitenputers) are
individually universal and this is precisely what confers their gredityin
modern technology, however this universality comes at eeprirhey ignore
the rich computational possibilities of materials and trycteate operations
that are close to a mathematical abstraction. Evolutionateno is a univer-
sal methodology for producing specific, highly tuned corapiahal devices.

It is important not to underestimate the real practical clitties associated
with using an unconstrained design process. Firstly théveslobehaviour
of the material may be extremely sensitive to the specifipgnties of the
material sample, so each piece would require individuahitrg. Thompson
originally experienced this difficulty, however in later ohe showed that
it was possible to evolve the configuration of FPGAs so thay throduced
reliable behaviour in a variety of environmental condi§da9].

Secondly, the evolutionary algorithm may utilize physieapects of any
part of the training set-up. Both of these difficulties halready been expe-
rienced [21, 23]. A third problem can be thought of as "themgproblem".
The means to supply huge amounts of configuration data ty adimple. This
problem is a very fundamental one. It suggests that if we waséxploit the
full physical richness of materials we might have to allow thaterial to grow
its own wires and be self-wiring. This has profound implicas for intrinsic
evolution as artificial hardware evolution requires cortgleconfigurability,
this implies that one would have to be able to "wipe-clear"dtolved wiring
and start again with a new artificial genotype. This might bssible by using
nanoparticles that assemble into nanowires. These coasaes bring us to
an important issue in evolution in materio. Namely, the pFobof choosing a
suitable materials that can be exploited by computer cthett@volution.

Evolution in materio: defining suitable materials

The obvious characteristic required by a candidate maisribe ability to
reconfigure it in some way. Liquid crystal, clay, salt saus etc can be read-
ily configured either electrically or mechanically; thelnysical state can be
adjusted, and readjusted, by applying a signal or forceohtrast (excluding
its electrical properties) the physical properties of asPRvould remain un-
changed during configuration. It is also desirable to bulifigure the system.
It would be infeasible to configure every molecule in the mateso the mate-
rial should support the ability to be reconfigured over laageas using a small
amount of configuration.

The material needs to perform some form of transformatiorc¢onputa-
tion) on incident signals that we apply. To do this, the matewill have to
interfere with the incident signal and perform a modificatio it. We will
need to be able to observe this modification, in order to ektrge result of
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the computation. To perform a non-trivial computation, thaterial should
be capable of performing complex operations upon the sighath capabil-
ities would be maximized if the system exhibited non-linbahavior when
interacting with input signals.

In summary, we can say that for a material to be useful to éeolun ma-
terio it should have the following properties:

= Modify incident signals in observable ways.

m The components of a system (i.e. the molecules within a ia§tén-
teract with each other locally such that non-linear effecisur at either
the local or global levels.

m |tis possible to configure the state of the material locally.

= |tis possible to observe the state of the material - eitherwhkole or in
one or more locations.

= For practical reasons we can state that the material sheutddonfig-
urable, and that changes in state should be temporary asiiele

Miller and Downing [28] identified a number of physical systethat have
some, if not all, of these desirable properties. They idiectiiquid crystal as
the most promising in this regard as it digitally writableconfigurable and
works at a molecular level. Most interestingly, it is an exdgrnof mesoscopic
organization. Some people have argued that it is within sydtems that
emergent, organized behavior can occur [30]. Liquid ctgsaiso exhibit the
phenomenon of self-assembly. They form a class of substahat are being
designed and developed in a field of chemistry called Suplesalar Chem-
istry [31]. This is a new and exciting branch of chemistrytiten be character-
ized as ‘the designed chemistry of the intermolecular bodipramolecular
chemicals are in a permanent process of being assembledsasdembled. It
is interesting to consider that conceptually liquid criss@ppear to sit on the
‘edge of chaos’ [32] in that they are fluids (chaotic) that barordered, under
certain circumstances.

Liquid crystal. Liquid crystal (LC) is commonly defined as a substance
that can exist in a mesomorphic state [33, 34]. Mesomorplaies have a
degree of molecular order that lies between that of a soligtal (long-range
positional and orientational) and a liquid, gas or amorghsaolid (no long-
range order). In LC there is long-range orientational otuérno long-range
positional order.

LC tends to be transparent in the visible and near infraretl caite ab-
sorptive in UV. There are three distinct types of LC: lyoimpolymeric and
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thermotropic. Lyotropic LC is obtained when an appropriateount of ma-
terial is dissolved in a solvent. Most commonly this is fodviwy water and
amphiphilic molecules: molecules with a hydrophobic partéer insoluble)
and a hydrophillic part (strongly interacting with watePplymeric LC is basi-
cally a polymer versions of the aromatic LC discussed. Theycharacterised
by high viscosity and include vinyls and Kevlar. ThermoimpC (TLC) is
the most common form and is widely used. TLC exhibit variagsitl crys-
talline phases as a function of temperature. They can betgepas rod-like
molecules and interact with each other in distinctive cedestructures. TLC
exists in three main forms: nematic, cholesteric and smedti nematic LC
the molecules are positionally arranged randomly but theshare a common
alignment axis. Cholesteric LC (or chiral nematic) is likenmatic however
they have a chiral orientation. In smectic LC there is tylbjca layered po-
sitionally disordered structure. The three types A, B andr€ defined as
follows. In type A the molecules are oriented in allignmentvihe natural
physical axes (i.e normal to the glass container), howevéyge C the com-
mon molecular axes of orientation is at an angle to the coatalC molecules
typically are dipolar. Thus the organisation of the molaculipoles give an-
other order of symmetry to the LC. Normally the dipoles wobérandomly
oriented. However in some forms the natural molecular épalre aligned
with one another. This gives rise to ferroelectric and &egtric forms.

There is a vast range of different types of liquid crystal. afCdifferent
types can be mixed. LC can be doped (as in Dye-Doped LC) tothkée light
absorption characteristics. Dye-Doped LC film has been ntlageis opti-
cally addressable and can undergo very large changes actigé index [35].
There are Polymer-Dispersed Liquid Crystals, these cap hailored, elec-
trically controlled light refractive properties. Anothiteresting form of LC
being actively investigated is Discotic LC. These have trenfof disordered
stacks ( 1-dimensional fluids) of disc-shaped molecules twoadimensional
lattice. Although discotic LC is an electrical insulatdrcan be made to con-
duct by doping with oxidants [36]. The oxidants are incogted into the fluid
hydrocarbon chain matrix (between disks). LC is widely knaas useful in
electronic displays, however, there are in fact, many neplaly applications
too. There are many applications of LC (especially ferrcgie LC) to elec-
trically controlled light modulation: phase modulatiomtical correlation, op-
tical interconnects and switches, wavelength filters,captheural networks.
In the latter case a ferroelectric LC is used to encode thght®in a neural
network [37].

Conducting and electroactive polymers. Conducting polymer compos-
ites have been made that rapidly change their microwavectieifecoefficient
when an electric field is applied. When the field is removed, dbmposite
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reverts to its original state. Experiments have shown tirtcbmposite can
change from one state to the other in the order of 100ms [38$0,A50me
polymers exhibit electrochromism. These substances ehtiaiy reflectance
when a voltage is applied. This can be reversed by a changstage polar-

ity [39]. Electroactive polymers [40] are polymers that ©ba their volume
with the application of an electric field. They are particlyanteresting as
voltage controlled artificial muscle. Organic semiconduglso look promis-
ing especially when some damage is introduced. Furthedslefeelectronic

properties of polymers and organic crystals can be foundih [

Voltage controlled colloids. Colloids are suspensions of particles of sub-
micron sizes in a liquid. The phase behavior of colloids isfalty understood.
Simple colloids can self assemble into crystals, while iradtmponent sus-
pensions can exhibit a rich variety of crystalline strueturThere are also elec-
trorheological fluids. These are suspensions of extremedyrfon-conducting
particles in an electrically insulating fluid. The viscgsdf these fluids can
be changed in a reversible way by large factors in responae &pplied elec-
tric field in times of the order of milliseconds [42]. Also &mitls can also be
made in which the particles are charged making them easihjpukatable by
suitable applied electric fields. Even if the particles aseaharged they may
be moved through the action of applied fields using a phenomé&nown as
dielectrophoresis which is the motion of polarized but &ieally uncharged
particles in nonuniform electric fields [43]. In work thathees the methods
of Pask nearly four decades ago, dielectrophoresis hasuseghto grow tiny
gold wires through a process of self-assembly [44].

Langmuir-Blodgett films.  Langmuir-Blodgett films are molecular mono-
layers of organic material that can be transferred to a soli$trate [45]. They
usually consist of hydrophillic heads and hydrophobicstattached to the sub-
strate. Multiple monolayers can be built and films can betbith very ac-
curate and regular thicknesses. By arranging an electeyaée &bove the film
it seems feasible that the local electronic properties efldélyers could be al-
tered. These systems look like feasible systems whose piepenight be
exploitable through computer controlled evolution of tlodtages.

Kirchoff-Lukasiewicz Machines. Work by Mills[46, 47] also demonstrates
the use of materials in computation. He has designed anngte Analog
Computer’ (EAC) that is a physical implementation of a Kinoff-Lukasiewicz
Machine (KLM)[46]. The machines are composed of logicalction units
connected to a conductive media, typically a conductivgmper sheet. The
logical units implement Lukasiewicz Logic - a type of muttlued logic[47].
Figure 2 shows how the Lukasiewicz Logic Arrays (LLA) are geoted to
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the conductive polymer. The LLA bridge areas of the sheadttogy. The logic
units measure the current at one point, perform a transtosmand then apply
a current source to the other end of the bridge.

Fing
diade
Py
]
analog - analag
inputs outputs
g —
ey
digital LL & addres=s bus
digital LL & configuration bus
conductive Lukasziewicz
zheet Togic arrays

Sensar [LL Az)

Figure 2.  Kirchhoff-Lukasiewicz Machine

Computation is performed by applying current sinks andesito the con-
ductive polymer and reading the output from the LLAs. Difiet computa-
tions can be performed that are determined by the locati@pplied signals
in the conducting sheet and the configuration of the LLAs. déercompu-
tation is performed by an interaction of the physics desdiby Kirchoff’s
laws and the Lukasiewicz Logic units. Together they form gsital device
that can solve certain kinds of partial differential eqoiasi. Using this form
of analogue computation, a large number of these equatambe solved in
nanoseconds - much faster than on a conventional computespeed of com-
putation is dependent on materials used and how they arésiceée to digital
computers, but it is expected that silicon implementatiatisbe capable of
finding tens of millions of solutions to the equations peroset

Examples of computation so far implemented in this systectude robot
control, control of a cyclotron beam [48], models of biolka)i systems (in-
cluding neural networks) [49] and radiosity based imageeeng.

One of the most interesting feature of these devices is thgramming
method. Itis very difficult to understand the actual proesassed by the sys-
tem to perform computation, and until recently most of therdiguration has
been done manually. This is difficult as the system is not aflento tra-
ditional software development approaches. However, &oolary algorithms
can be used to automatically define the parameters of the anddhe place-
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ment of current sinks and sources. By defining a suitablesfitfienction, the
configuration of the EAC can be evolved - which removes thel fieehuman
interaction and for knowledge of the underlying system.

Although it is clear that such KLMs are clearly using the pbghkproperties
of a material to perform computation, the physical statéhefrhaterial is not
reconfigured i.e. programmed, only the currents in the sireethanged.

Evolution in materio is verified with liquid crystal

Harding [50] has verified Miller’s intuition about the subifity of liquid
crystal as an evolvable material by demonstrating that rieligtively easy to
configure liquid crystal to perform various forms of comgiata.

In 2004, Harding constructed an analogue processor thaegtithe physi-
cal properties of liquid crystal for computation. He evalwbe configuration
of the liquid crystal to discriminate between two square @gaof many differ-
ent frequencies. This demonstrated, for the first time ttieprinciple of using
computer-controlled evolution was a viable and powerfahteque for using
non-silicon materials for computation. The analogue pesce consists of a
passive liquid crystal display mounted on a reconfigurableuit, known as
an evolvable motherboard. The motherboard allows sigmalscanfiguration
voltages to be routed to physical locations in the liquidstay

Harding has shown that many different devices can be evdlvdiduid
crystal including:

= Tone discriminator. A device was evolved in liquid crystatcould dif-
ferentiate many different frequencies of square wave. €kalts were
competitive, if not superior to those evolved in the FPGA.

= Logic gates. A variety of two input logic gates were evolvedowing
that liquid crystal could behave in a digital fashion. Thmdicates that
liquid crystal is capable of universal computation.

= Robot controller. An obstacle avoidance system for a sirepforatory
robot was evolved. The results were highly competitive hwgiblutions
taking fewer evaluations to find compared to other work orivegbrobot
controllers.

One of the surprising findings in this work has been that ihguout to
be relatively easy to evolve the configuration of liquid ¢ayto solve tasks
i.e. only 40 generations of a modest population of configomatare required
to evolve a very good frequency discriminator, compared&thousands of
generations required to evolve a similar circuit on an FPG&His work has
shown that evolving such devices in liquid crystal is eai@n when using
conventional components, such as FPGAs. The work is a cerapdstration
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that evolutionary design can produce solutions that aredwkyhe scope of
human design.

3. Evolution In Materio using Liquid Crystal:
Implementational details

An evolvable motherboard(EM)[23] is a circuit that can bediso investi-
gate intrinsic evolution. The EM is a reconfigurable cirabit rewires a cir-
cuit under computer control. Previous EMs have been useddieescircuits
containing electronic components [23, 51] - however thay aso be used
to evolve in materio by replacing the standard components avicandidate
material.

An EM is connected to an Evolvatron. This is essentially alfCis used to
control the evolutionary processes. The Evolvatron alsodigital and analog
I/0, and can be used to provide test signals and record tip@nmse of the
material under evolution.

T A=t

. . P
2 Measure Generate
fos :
g itne test signal -
02 Fitness ost signal

o bttt :

o O T

Analogue In l Analogue Output

Configuration

|

v

Liquid Crystal

Figure 3. Equipment configuration

The Liquid Crystal Evolvable Motherboard (LCEM) is circthiat uses four
cross-switch matrix devices to dynamically configure dis@onnecting to
the liquid crystal. The switches are used to wire the 64 coiimes on the
LCD to one of 8 external connections. The external connestiare: input
voltages, grounding, signals and connections to measutasfiegices. Each of
the external connectors can be wired to any of the connectmthe LCD.

The external connections of the LCEM are connected to thdvBtron's
analogue inputs and outputs. One connection was assignetdefancident
signal, one for measurement and the other for fixed voltagdés value of
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Figure 4. The LCEM

the fixed voltages is determined by the evolutionary algorjtbut is constant
throughout each evaluation.

8 External Connectors

—
LCD contacts,
32 per side
- 64 in total.

Liquid Crystal Display

8x16 Analog Switch Arruy/

Figure 5. Schematic of LCEM
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In these experiments the liquid crystal glass sandwich exaeved from the
display controller it was originally mounted on, and placexthe LCEM. The
display has a large number of connections (in excess of B0@)ever because
of PCB manufacturing constraints we are limited in the sizeomnection we
can make, and hence the number of connections. The LCD eftiieroughly
positioned over the pads on the PCB, with many of the PCB paultshing
more than 1 of the connectors on the LCD. This means that wapmiying
configuration voltages to several areas of LC at the same time

Unfortunately neither the internal structure nor the eieat characteristics
of the LCD are known. This raises the possibility that a camfigion may be
applied that would damage the device. The wires inside thB b€ made
of an extremely thin material that could easily be burnt éub® much cur-
rent flows through them. To guard against this, each cororettithe LCD is
made through a 4.7Kohm resistor in order to provide pratectigainst short
circuits and to help limit the current in the LCD. The currenpplied to the
LCD is limited to 100mA. The software controlling the evadut is also re-
sponsible for avoiding configurations that may endangerdehéce (such as
short circuits).

It is important to note that other than the control circuitoy the switch
arrays there are no other active components on the mothérboaly analog
switches, smoothing capacitors, resistors and the LCDrasept.

Stability and Repeatability Issues. When the liquid crystal display is ob-
served while solving a problem it is seen that some regiottssdiquid display
go dark indicating that the local molecular direction hasrbehanged. This
means that the configuration of the liquid crystal is chaggihile signals
are being applied. To draw an analogy with circuit desige, ititident sig-
nals would be changing component values or changing theitiapology,
which would have an effect on the behaviour of the systems H&hiikely to
be detrimental to the measured performance of the circuitea solution is
evolved, the fitness function automatically measures liil#iaover the period
of the evaluation. Changes made by the incident signals eaotsidered part
of the genotype-phenotype mapping. Solutions that caroy with their ini-
tial configurations being altered will achieve a low scorewdver, the fitness
function cannot measure the behaviour beyond the end ofvdiaation time.
Therein lies the difficulty, in evolution in materio long teistability cannot be
guaranteed.

Another issue concerns repeatability. When a configurasiapplied to the
liquid crystal the molecules are unlikely go back to exaetlyere they were
when this configuration was tried previously. Assumingf thare is a strong
correlation between genotype and phenotype, then it idylitteat evolution
will cope with this extra noise. However, if evolved deviae® to be useful
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one needs to be sure that previously evolved devices wilition in the same
way as they did when originally evolved.

In [27] it is noted that the behavior of circuits evolved ingically can be
influenced by previous configurations - therefore their bgltgand hence fit-
ness) is dependent not only on the currently evaluatedithafils configuration
but on those that came before. It is worth noting that thisesigely what hap-
pens in natural evolution. For example, in a circuit camasiimay still hold
charge from a previously tested circuit. This charge wohé&htaffect the cir-
cuits operation, however if the circuit was tested agaitwi stored charge a
different behavior would be expected and a different fitrsesse would be ob-
tained. Not only does this effect the ability to evolve citspubut would mean
that some circuits are not valid. Without the influence ofgheviously evalu-
ated circuits the current solution may not function as etgukclt is expected
that such problems will have analogies in evolution in mateiThe config-
urations are likely to be highly sensitive to initial condits (i.e. conditions
introduced by previous configurations).

Dealing with Environmental Issues. A major problem when working with
intrinsic evolution is separating out the computation gaidly being carried
out by the target device, and that actually done by the nadtbding used.
For example, whilst trying to evolve an oscillator Bird anayizell discovered
that evolution was using part of the circuit for a radio angenand picking up
emissions from the environment [22]. Layzell also found thalved circuits
were sensitive to whether or not a soldering iron was pluggeghot even
switched on) in another part of the room![23].

An evolved device is not useful if it highly sensitive to itsve@onment in
unpredictable ways, and it will not always be clear what emnental effects
the system is using. It would be unfortunate to evolve a defoc use in a
space craft, only to find out it fails to work once out of rangedocal radio
tower!

To minimise these risks, we will need to check the operatibevolved
systems under different conditions. We will need to testhibbavior of a
device using a different set up in a different location. Il Wwe important to
know if a particular configuration only works with one padifiar sample of a
given material.

The Computational Power of Materials

In [52] Lloyd, argued that the theoretical computing powka &ilogram of
material is far more than is possible with a kilogram of ttimtial computer.
He notes that computers are subject to the laws of physidsthait these laws
place limits on the maximum speed they can operate and thergnod in-
formation it can process. Lloyd shows that if we were fulljeatn exploit
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a material, we would get an enormous increase in computimgpad-or ex-
ample, with 1 kilogram of matter we should be able to perfopoghly 52:105°
operations per second, and stdi@*! bits. Amazingly, contemporary quantum
computers do operate near these theoretical limits[52].

A small amount of material also contains a large number ofpmments (re-
gardless of whether we consider the molecular or atomie@xsc@his leads to
some interesting thoughts. If we can exploit materials iatldvel, we would
be able to do a vast amount of computation in a small volumeanallssize also
hints at low power consumption, as less energy has to be spgetform an
operation. Many components also provides a mechanismifabiley through
redundancy. A particularly interesting observation, egply when considered
in terms of non Von-Neumann computation, is the massivdlpisan we may
be able to achieve. The reason that systems such as quaniAarial chem-
ical computation can operate so quickly is that many opamatare performed
at the same time. A programmable material might be capabeiddrming
vast numbers of tasks simultaneously, and therefore peavidomputational
advantage.

In commercial terms, small is often synonymous with low coktmay
be possible to construct devices using cheaply availabtermals. Reliability
may not be an issue, as the systems could be evolved to beveipdault
tolerant using their intrinsic redundancy. Evolution iga&hle of producing
novel designs. Koza has already rediscovered circuitsinffiitige on recent
patents, and his genetic programming method has ‘invebi@aiid new circuit
designs [53]. Evolving in materio could produce many nowvetigns, and
indeed given the infancy of programmable materials allgtesmay be unique
and hence patentable.

4. Future Directions

The work described here concerning liquid crystal comjpantat devices is
at an early stage. We have merely demonstrated that it igfgh@$s evolve con-
figurations of voltages that allow a material to perform degsicomputations.
Any application that ensues from this work is unlikely to beplacement for
a simple electronic circuit. We can design and build thosg saccessfully.
What we have difficulty with is building complex, fault tolart systems for
performing complex computation. It appears that natureaged to do this. It
used a simple process of a repetitive test and modify, anid ithis in a uni-
verse of unimaginable physical complexity. If nature capleix the physical
properties of a material and its surroundings through ewwiuthen so should
we.

There are many important issues that remain to be addressédugh we
have made some suggestions about materials worthy of igagen, it is at
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present unclear which materials are most suitable. An @xpeatal platform

needs to be constructed that allows many materials to lukdnd investigated.
The use of microelectrode arrays in a small volume contairernd allow this.

This would also have the virtue of allowing internal signalshe materials to
be inspected and potentially understood.

We need materials that are rapidly configurable. They musbadrag-
ile and sensitive to minute changes in physical setup. Thestine capable
of maintaining themselves in a stable configuration. Theeneds should be
complex and allow us to carry out difficult computations measily than con-
ventional means. One would like materials that can be paakagto small
volumes. The materials should be relatively easily intrthwith. So far,
material systems have been configured by applying a constenfiguration
pattern, however this may not be appropriate for all systdtmeay be neces-
sary to put the physical system under some form of respousiviol, in order
to program and then keep the behavior stable.

We may or may not know if a particular material can be used téopa
some form of computation. However, we can treat our matesah “black
box”, and using evolution as a search technique, autontigtidgiscover what,
if any, computations our black box can perform. The first s¢efo build an
interface that will allow us to communicate with a materighen we will use
evolution to find a configuration we can apply using this platf, and then
attempt to find a mapping from a given problem to an input bigtéor that
material, and a mapping from the materials response to gubutf this is
done correctly, we might be automatically able to tell if atemi@l can perform
computation, and then classify the computation.

When we evolve in materio, using mappings evolved in sofwhow can
we tell when the material is giving us any real benefit? Thedeof evolution
in materio has been that the evolved systems can be veryuttifftcanalyze,
and the principal obstacle to the analysis is the problenepésating out the
computational role that each component plays in the evabtystem. Theses
issues are by no means just a problem for evolution in mat@iey may be
an inherent part of complex evolved systems. Certainly tiaerstanding of
biological systems are providing immense challenges tnssts.

The single most important aspect that suggests that esolutimaterio has
a future is that natural evolution has produced immensghpisticated mate-
rial computational systems. It would seem foolish to igrtbie and merely try
to construct computational devices that operate accordirmge paradigm of
computation (i.e. Turing). Oddly enough, it is preciselg gophistication of
the latter that allows us to attempt the former.
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5. Further Reading

These are just cites placed so that they are included in thi@dpaphy.
They will need to be moved to a 2nd bibliography later.
[47, 49, 48, 17, 16, 54] [19, 55-57] [58, 52]
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