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Glossary

Evolutionary algorithm A computer algorithm loosely inspired by Dar-
winian evolution

Generate-and-testThe process of generating a potential solution to a com-
putational problem and testing it to see how good a solution it is. The idea
behind it is that no human ingenuity is employed to make good solutions more
likely.

GenotypeA string of information that encodes a potential solution instance
of a problem and allows its suitability to be assessed

Evolution in materio The method of applying computer controlled evo-
lution to manipulate or configure a physical system

Liquid Crystal Substances that have properties between those of a liquid
and a crystal

1. Definition of the Subject and its Importance

Evolution in materio refers to the use of computers running search algo-
rithms, called evolutionary algorithms, to find the values of variables that should
be applied to material systems so that they carry out useful computation. Ex-
amples of such variables might be the location and magnitudeof voltages that
need to be applied to a particular physical system. Evolution in materio is
a methodology for programming materials that utilizes physical effects that
the human programmer need not be aware of. It is a general methodology
for obtaining analogue computation that is specific to the desired problem do-
main. Although a form of this methodology was hinted at in thework of Gor-
don Pask in the 1950s it was not convincingly demonstrated until 1996 by
Adrian Thompson, who showed that physical properties of a digital chip could
be exploited by computer controlled evolution. This article describes the first
demonstration that such a method can be used to obtain specific analogue com-
putation in a non-silicon based physical material (liquid crystal). The work is
important for a number of reasons. Firstly, it proposes a general method for
building analogue computational devices. Secondly it explains how previously
unknown physical effects may be utilized to carry out computations. Thirdly,
it presents a method that can be used todiscoveruseful physical effects that
can form the basis of future computational devices.

2. Introduction

Physical Computation

Classical computation is based on a mathematical model of computation
based on an abstract (but physically inspired) machine called a Turing Ma-
chine [1]. A Turing machine is a machine that can write or erase symbols on a
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possibly infinite one dimensional tape. Its actions are determined by a table of
instructions that determine what the machine will write on the tape (by moving
one square left or right) given its state (stored in a state register) and the sym-
bol on the tape. Turing showed that the calculations that could be performed
on such a machine accord with the notion of computation in mathematics. The
Turing machine is an abstraction (partly because it uses a possibly infinite tape)
and to this day it is still not understood what limitations orextensions to the
computational power of Turing’s model might be possible using real physi-
cal processes. Von Neumann and others at the Institute for Advanced Study at
Princeton devised a design for a computer based on the ideas of Turing that has
formed the foundation of modern computers. Modern computers are digital in
operation. Although they are made of physical devices (i.e.transistors), com-
putations are made on the basis of whether a voltage is above or below some
threshold. Prior to the invention of digital computers there have been a vari-
ety of analogue computing machines. Some of these were purely mechanical
(e.g. an abacus, a slide-rule, Charles Babbage’s difference engine, Vannevar
Bush’s Differential Analyser) but later computing machines were built using
operational amplifiers [2].

There are many aspects of computation that were deliberately ignored by
Turing in his model of computation. For instance, speed, programmability,
parallelism, openess, adaptivity are not considered. The speed at which an op-
eration can be performed is clearly an important issue sinceit would be of little
use to have a machine that can calculate any computable function but takes an
arbitrarily large amount of time to do so. Programmability is another issue that
is of great importance. Writing programs directly in the form of instruction
tables that could be used with a device based on a Turing is extremely tedious.
This is why many high-level computer languages have been devised. The gen-
eral issue of how to subdivide a computer program into a number of parallel
executing processes so that the intended computation is carried out as quickly
as possible is still unsolved. Openness refers to systems that can interact with
an external environment during their operation. Openness is exhibited strongly
in biological systems where new resources can be added or removed either by
an external agency or by the actions taken by the system itself. Adaptivity
refers to the ability of systems to change their characteristics in response to an
environment.

In addition to these aspects, the extent to which the underlying physics
affects both the abstract notion of computation and its tractability has been
brought to prominence through the discovery of quantum computation, where
Deutsch pointed out that Turing machines implicitly use assumptions based on
physics [3]. He also showed that through ‘quantum parallelism’ certain com-
putations could be performed much more quickly than on classical comput-
ers. Other forms of physical computation that have recentlybeen explored are:
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reaction-diffusion systems [4], DNA computing [5] [6] and synthetic biology
[7].

In the UK a number of Grand Challenges in computing research have been
proposed [8], in particular ‘Journeys in Non-Classical Computation’ [9] [10]
seeks to explore, unify and generalize many diverse non-classical computa-
tional paradigms to produce a mature science of computation.

Toffoli argued that ‘Nothing Makes Sense in Computing Except in the Light
of Evolution’ [11]. He argues firstly that a necessary but notsufficient condi-
tion for a computation to have taken place, is when a novel functions is pro-
duced from a fixed and finite repertoire of components (i.e. logic gates, protein
molecules). He suggests that a sufficient condition requires intention. That is
to say, we cannot argue that computation has taken place unless a system has
arisen for a higher purpose (this is why he insists on intention as being a pre-
requisite for computation). Otherwise, almost everythingis carrying out some
form of computation (which is not a helpful point of view). Thus a Turing
machine does not carry out computations unless it has been programmed to
do so, and since natural evolution constructs organisms that have an increased
chance of survival (the higher ‘purpose’) we can regard themas carrying out
computations. It is in this sense that Toffoli points to the fundamental role of
evolution in the definition of a computation as it has provided animals with the
ability to have intention.

This brings us to one of the fundamental questions in computation. How
can we program a physical system to perform a particular computation? The
dominant method used to answer this question has been to construct logic gates
and from these build a von Neumann machine (i.e. a digital computer). The
mechanism that has been used to devise a computer program to carry out a par-
ticular computation is the familiar top-down design process, where ultimately
the computation is represented using Boolean operations. According to Con-
rad this process leads us to pay "The Price of Programmability" [12], whereby
in conventional programming and design we proceed by excluding many of
the processes that may lead to us solving the problem at hand.Natural evo-
lution does not do this. It is noteworthy that natural evolution has constructed
systems of extraordinary sophistication, complexity and computational power.
We argue that it is not possible to construct computational systems of such
power using a conventional methodology and that complex software systems
that directly utilize physical effects will require some form of search process
akin to natural evolution together with a way of manipulating the properties of
materials. We suggest that some form of evolution ought to bean appropri-
ate methodology for arriving atphysicalsystems that compute. In this chapter
we discuss work that has adopted this methodology. We call itevolution in
materio.
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Evolutionary algorithms

Firstly we propose that to overcome the limitations of a top-down design
process, we should use a more unconstrained design technique that is more
akin to a process of generate-and-test. However a guided search method is
also required that spends more time in areas of the search space that confer
favorable traits for computation. One such approach is the use of evolution-
ary algorithms. These algorithms are inspired by the Darwinian concepts of
survival of the fittest and the genetic inheritance of information. Using a com-
puter, a population of randomly generated solutions is systematically tested,
selected and modified until a solution has been found [13–15].

As in nature, a genetic algorithm optimizes a population of individuals by
selecting the ones that are best suited to solving a problem and allowing their
genetic make-up to propagate into future generations. It istypically guided
only by the evolutionary process and often contains very limited domain spe-
cific knowledge. Although these algorithms are bio-inspired, it is important
that any analogies drawn with nature are considered only as analogies.

Their lack of specialization for a problem makes genetic algorithms ideal
search techniques where little is known about a problem. As long as a suit-
able representation is chosen along with a fitness function that allows for ease
of movement around a search space, a GA can search vast problem spaces
rapidly. Another feature of their behavior is that providedthat the genetic rep-
resentation chosen is sufficiently expressive the algorithm can explore potential
solutions that are unconventional. A human designer normally has a set of pre-
defined rules and strategies that they adopt to solve a problem. These precon-
ceptions may prevent trying a new method, and may prevent thedesigner using
a better solution. A genetic algorithm does not necessarilyrequire such domain
knowledge. Evolutionary algorithms have been shown to be competitive or
surpass human designed solutions in a number of different areas. The largest
conference on evolutionary computation called GECCO has anannual session
on evolutionary approaches that have produced human competitive scientific
and technological results. Moreover the increase in computational power of
computers makes such results increasingly more likely.

Many different versions of genetic algorithms exist. Variations in repre-
sentations and genetic operators change the performance characteristics of the
algorithm, and depending on the problem, people employ a variety of modi-
fications of the basic algorithm. However, all the algorithms follow a similar
basic set of steps.

Firstly the numbers or physical variables that are requiredto define a po-
tential solution have to be identified and encoded into a datarepresentation
that can be manipulated inside a computer program. This is referred to as the
encoding step. The representation chosen is of crucial importance as it is pos-
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sible to inadvertedly choose overly constrained representations which limits
the portions of the space of potential solutions that will beconsidered by the
evolutionary algorithm. Generally the encoded information is referred to as
a genotype and genotypes are sometimes divided into a numberof separate
strings called chromosomes. Each entry in the chromosome string is an allele,
and one or more of these make up a gene.

The second step is to create inside the computer a number of independently
generated genotypes whose alleles have been chosen with uniform probabil-
ity from the allowed set of values. This collection of genotypes is called a
population.

In its most basic form, an individual genotype is a single chromosome made
of 1s and 0s. However, it is also common to use integer and floating-point
numbers if they more appropriate for the task at hand. Combinations of differ-
ent representations can also be used within the same chromosome, and that is
the approach used in the work described in this article. Whatever representa-
tion is used, it should be able to adequately describe the individual and provide
a mechanism where its characteristics can be transferred tofuture generations
without loss of information.

Each of these individuals is then decoded into its phenotype, the outward,
physical manifestation of the individual and tested to see how well the candi-
date solution solves the problem at hand. This is usually returned as a number
that is referred to as thefitnessof the genotype. Typically it is this phase in a
genetic algorithm that is the most time consuming.

The next stage is to select what genetic information will proceed to the next
generation. In nature the fitness function and selection areessentially the same
- individuals that are better suited to the environment survive to reproduce
and pass on their genes. In the genetic algorithm a procedureis applied to
determine what information gets to proceed.

Genetic algorithms are often generational - where all the old population is
removed before moving to the next generation, in nature thisprocess is much
less algorithmic. However, to increase the continuity of information between
generations, some versions of the algorithm use elitism, where the fittest indi-
viduals are always selected for promotion to the next generation. This ensures
that good solutions are not lost from the population, but it may have the side
effect of causing the genetic information in the populationto converge too
quickly so that the search stagnates on a sub-optimal solution.

To generate the next population, a procedure analogous to sexual reproduc-
tion occurs. For example, two individuals will be selected and they will then
have their genetic information combined together to produce the genotype for
the offspring. This process is called recombination or crossover. The genotype
is split into sections at randomly selected points called crossover points. A
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“simple” GA has only one of these points, however it is possible to perform
this operation at multiple points.

Sections of the two chromosomes are then put together to forma new in-
dividual. This individual shares some of the characteristics of both parents.
There are many different ways to choose which members of the population to
breed with each other, the aim in general is to try and ensure that fit individuals
get to reproduce with other fit individuals. Individuals canbe selected with a
probability proportional to their relative fitness or selected through some form
of tournament, which may choose two or more chromosomes at random from
the population and select the fittest.

In natural recombination, errors occur when the DNA is splitand combined
together. Also, errors in the DNA of a cell can occur at any time under the
influence of a mutagen, such as radiation, a virus or toxic chemical. The ge-
netic algorithm also has mutations. A number of alleles are selected at random
and modified in some way. For a binary GA, the bit may be flipped,in a real-
numbered GA a random value may be added to or subtracted from the previous
allele.

Although GAs often have both mutation and crossover, it is possible to just
to use mutation. A mutation only approach has in some cases been demon-
strated to work, and often crossover is seen as a macro mutation operator -
effectively changing large sections of a chromosome.

After the previous operations have been carried out, the newindividuals in
the population are then retested and their new fitness scorescalculated. Even-
tually this process leads to an increase in the average fitness of the population,
and so the population moves closer toward a solution. This cycle of test, select
and reproduce is continued until a solution is found (or someother termination
condition is reached), at which point the algorithm stops. The performance of a
genetic algorithm is normally measured in terms of the number of evaluations
required to find a solution of a given quality.

Evolution in materio: the historical background

It is arguable that ‘evolution in materio’ began in 1958 in the work of Gor-
don Pask who worked on experiments to grow neural structuresusing elec-
trochemical assemblages[16–19]. Gordon Pask’s goal was tocreate a device
sensitive to either sound or magnetic fields that could perform some form of
signal processing - a kind of ear. He realised he needed a system that was rich
in structural possibilities, and chose to use a metal solution. Using electric
currents, wires can be made to self-assemble in an acidic aqueous metal-salt
solution (e.g. ferrous sulphate). Changing the electric currents can alter the
structure of these wires and their positions - the behavior of the system can
be modified through external influence. Pask used an array of electrodes sus-
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pended in a dish containing the metal-salt solution, and by applying current
(either transiently or a slowly changing source) was able tobuild iron wires
that responded differently to two different frequencies ofsound- 50Hz and
100Hz.

Figure 1. Pask’s experimental set up for growing dendritic wires in ferrous sulphate solution
[17]

Pask had developed a system whereby he could manually train the wire
formation in such a way that no complete specification had to be given - a
complete paradigm shift from previous engineering techniques which would
have dictated the position and behavior of every component in the system. His
training technique relied on making changes to a set of resistors, and updating
the values with given probabilities - in effect a test-randomly modify-test cycle.
We would today recognise this algorithm as some form of evolutionary, hill
climbing strategy - with the test stage as the fitness evaluation.

In 1996 Adrian Thompson started what we might call the modernera of evo-
lution in materio. He was investigating whether it was possible to build work-
ing electronic circuits using unconstrained evolution (effectively, generate-
and-test) using a re-configurable electronic silicon chip called an Field Pro-
grammable Gate Array (FPGA). Carrying out evolution by defining configu-
rations of actual hardware components is known asintrinsic evolution. This
is quite possible using FPGAs which are devices that have a two-dimensional
array of logic functions that a configuration bit string defines and connects to-
gether. Thompson had set himself the task of evolving a digital circuit that
could discriminate between an applied 1kHz or 10kHz appliedsignal)[20, 21].
He found that computer controlled evolution of the configuring bit strings
could relatively easily solve this problem. However, when he analyzed the
successful circuits he found to his surprise that they worked by utilizing subtle
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electrical properties of the silicon. Despite painstakinganalysis and simulation
work he was unable to explain how, or what property was being utilized. This
lack of knowledge of how the system works, of course, prevents humans from
designing systems that are intended to exploit these subtleand complex physi-
cal characteristics. However, it does not prevent exploitation through artificial
evolution. Since then a number of researchers have demonstrated the viability
of intrinsic evolution in silicon devices [21–27].

The termevolution in materiowas first coined by Miller and Downing [28].
They argued that the lesson that should be drawn from the workof [21]is that
evolution may be used to exploit the properties of a wider range of materials
than silicon.

In summary, evolution in materio can be described as:

Exploitation, using an unconstrained evolutionary algorithm, of the non-linear
properties of a malleable or programmable material to perform a desired function
by altering its physical or electrical configuration.

Evolution in materio is a subset of a research field known as evolvable hard-
ware. It aims to exploit properties of physical systems withmuch fewer pre-
conditions and constraints than is usual, and it deliberately tries to avoid paying
Conrad’s ‘Price of Programmability’. However, to get access to physically rich
systems, we may have to discard devices designed with human programming
in mind. Such devices are often based on abstract idealizations of processes
occurring in the physical world. For example, FPGAs are considered as digi-
tal, but they are fundamentally analogue devices that have been constrained to
behave in certain, human understandable ways. This means that intrinsically
complex physical processes are carefully manipulated to represent extremely
simple effects (e.g. a rapid switch from one voltage level toanother). Un-
constrained evolution, as demonstrated by Thompson, allows for the analogue
properties of such devices to be effectively utilized.

We would expect physically rich systems to exhibit non-linear properties -
they will be complex systems. This is because physical systems generally have
huge numbers of parts interacting in complex ways. Arguably, humans have
difficulty working with complex systems, and the use of evolution enables us
to potentially overcome these limitations when dealing with such systems.

When systems are abstracted, the relationship to the physical world becomes
more distant. This is highly convenient for human designerswho do not wish
to understand, or work with, hidden or subtle properties of materials. Exploita-
tion through evolution reduces the need for abstraction, asit appears evolution
is capable of discovering and utilizing any physical effects it can find. The
aim of this new methodology in computation is to evolve special purpose com-
putational processors. By directly exploiting physical systems and processes,
one should be able to build extremely fast and efficient computational devices.
It is our view that computer controlled evolution is a universal methodology
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for doing this. Of course, Von Neumann machines (i.e. digital computers) are
individually universal and this is precisely what confers their great utility in
modern technology, however this universality comes at a price. They ignore
the rich computational possibilities of materials and try to create operations
that are close to a mathematical abstraction. Evolution in materio is a univer-
sal methodology for producing specific, highly tuned computational devices.

It is important not to underestimate the real practical difficulties associated
with using an unconstrained design process. Firstly the evolved behaviour
of the material may be extremely sensitive to the specific properties of the
material sample, so each piece would require individual training. Thompson
originally experienced this difficulty, however in later work he showed that
it was possible to evolve the configuration of FPGAs so that they produced
reliable behaviour in a variety of environmental conditions [29].

Secondly, the evolutionary algorithm may utilize physicalaspects of any
part of the training set-up. Both of these difficulties have already been expe-
rienced [21, 23]. A third problem can be thought of as "the wiring problem".
The means to supply huge amounts of configuration data to a tiny sample. This
problem is a very fundamental one. It suggests that if we wishto exploit the
full physical richness of materials we might have to allow the material to grow
its own wires and be self-wiring. This has profound implications for intrinsic
evolution as artificial hardware evolution requires complete reconfigurability,
this implies that one would have to be able to "wipe-clean" the evolved wiring
and start again with a new artificial genotype. This might be possible by using
nanoparticles that assemble into nanowires. These considerations bring us to
an important issue in evolution in materio. Namely, the problem of choosing a
suitable materials that can be exploited by computer controlled evolution.

Evolution in materio: defining suitable materials

The obvious characteristic required by a candidate material is the ability to
reconfigure it in some way. Liquid crystal, clay, salt solutions etc can be read-
ily configured either electrically or mechanically; their physical state can be
adjusted, and readjusted, by applying a signal or force. In contrast (excluding
its electrical properties) the physical properties of an FPGA would remain un-
changed during configuration. It is also desirable to bulk configure the system.
It would be infeasible to configure every molecule in the material, so the mate-
rial should support the ability to be reconfigured over largeareas using a small
amount of configuration.

The material needs to perform some form of transformation (or computa-
tion) on incident signals that we apply. To do this, the material will have to
interfere with the incident signal and perform a modification to it. We will
need to be able to observe this modification, in order to extract the result of
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the computation. To perform a non-trivial computation, thematerial should
be capable of performing complex operations upon the signal. Such capabil-
ities would be maximized if the system exhibited non-linearbehavior when
interacting with input signals.

In summary, we can say that for a material to be useful to evolution in ma-
terio it should have the following properties:

Modify incident signals in observable ways.

The components of a system (i.e. the molecules within a material) in-
teract with each other locally such that non-linear effectsoccur at either
the local or global levels.

It is possible to configure the state of the material locally.

It is possible to observe the state of the material - either asa whole or in
one or more locations.

For practical reasons we can state that the material should be reconfig-
urable, and that changes in state should be temporary or reversible.

Miller and Downing [28] identified a number of physical systems that have
some, if not all, of these desirable properties. They identified liquid crystal as
the most promising in this regard as it digitally writable, reconfigurable and
works at a molecular level. Most interestingly, it is an example of mesoscopic
organization. Some people have argued that it is within suchsystems that
emergent, organized behavior can occur [30]. Liquid crystals also exhibit the
phenomenon of self-assembly. They form a class of substances that are being
designed and developed in a field of chemistry called Supramolecular Chem-
istry [31]. This is a new and exciting branch of chemistry that can be character-
ized as ‘the designed chemistry of the intermolecular bond’. Supramolecular
chemicals are in a permanent process of being assembled and disassembled. It
is interesting to consider that conceptually liquid crystals appear to sit on the
‘edge of chaos’ [32] in that they are fluids (chaotic) that canbe ordered, under
certain circumstances.

Liquid crystal. Liquid crystal (LC) is commonly defined as a substance
that can exist in a mesomorphic state [33, 34]. Mesomorphic states have a
degree of molecular order that lies between that of a solid crystal (long-range
positional and orientational) and a liquid, gas or amorphous solid (no long-
range order). In LC there is long-range orientational orderbut no long-range
positional order.

LC tends to be transparent in the visible and near infrared and quite ab-
sorptive in UV. There are three distinct types of LC: lyotropic, polymeric and
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thermotropic. Lyotropic LC is obtained when an appropriateamount of ma-
terial is dissolved in a solvent. Most commonly this is formed by water and
amphiphilic molecules: molecules with a hydrophobic part (water insoluble)
and a hydrophillic part (strongly interacting with water).Polymeric LC is basi-
cally a polymer versions of the aromatic LC discussed. They are characterised
by high viscosity and include vinyls and Kevlar. Thermotropic LC (TLC) is
the most common form and is widely used. TLC exhibit various liquid crys-
talline phases as a function of temperature. They can be depicted as rod-like
molecules and interact with each other in distinctive ordered structures. TLC
exists in three main forms: nematic, cholesteric and smectic. In nematic LC
the molecules are positionally arranged randomly but they all share a common
alignment axis. Cholesteric LC (or chiral nematic) is like nematic however
they have a chiral orientation. In smectic LC there is typically a layered po-
sitionally disordered structure. The three types A, B and C are defined as
follows. In type A the molecules are oriented in allignment with the natural
physical axes (i.e normal to the glass container), however in type C the com-
mon molecular axes of orientation is at an angle to the container. LC molecules
typically are dipolar. Thus the organisation of the molecular dipoles give an-
other order of symmetry to the LC. Normally the dipoles wouldbe randomly
oriented. However in some forms the natural molecular dipoles are aligned
with one another. This gives rise to ferroelectric and ferrielectric forms.

There is a vast range of different types of liquid crystal. LCof different
types can be mixed. LC can be doped (as in Dye-Doped LC) to alter their light
absorption characteristics. Dye-Doped LC film has been madethat is opti-
cally addressable and can undergo very large changes in refractive index [35].
There are Polymer-Dispersed Liquid Crystals, these can have tailored, elec-
trically controlled light refractive properties. Anotherinteresting form of LC
being actively investigated is Discotic LC. These have the form of disordered
stacks ( 1-dimensional fluids) of disc-shaped molecules on atwo-dimensional
lattice. Although discotic LC is an electrical insulator, it can be made to con-
duct by doping with oxidants [36]. The oxidants are incorporated into the fluid
hydrocarbon chain matrix (between disks). LC is widely known as useful in
electronic displays, however, there are in fact, many non-display applications
too. There are many applications of LC (especially ferroelectric LC) to elec-
trically controlled light modulation: phase modulation, optical correlation, op-
tical interconnects and switches, wavelength filters, optical neural networks.
In the latter case a ferroelectric LC is used to encode the weights in a neural
network [37].

Conducting and electroactive polymers. Conducting polymer compos-
ites have been made that rapidly change their microwave reflection coefficient
when an electric field is applied. When the field is removed, the composite
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reverts to its original state. Experiments have shown that the composite can
change from one state to the other in the order of 100ms [38]. Also, some
polymers exhibit electrochromism. These substances change their reflectance
when a voltage is applied. This can be reversed by a change in voltage polar-
ity [39]. Electroactive polymers [40] are polymers that change their volume
with the application of an electric field. They are particularly interesting as
voltage controlled artificial muscle. Organic semiconductors also look promis-
ing especially when some damage is introduced. Further details of electronic
properties of polymers and organic crystals can be found in [41].

Voltage controlled colloids. Colloids are suspensions of particles of sub-
micron sizes in a liquid. The phase behavior of colloids is not fully understood.
Simple colloids can self assemble into crystals, while multi-component sus-
pensions can exhibit a rich variety of crystalline structures. There are also elec-
trorheological fluids. These are suspensions of extremely fine non-conducting
particles in an electrically insulating fluid. The viscosity of these fluids can
be changed in a reversible way by large factors in response toan applied elec-
tric field in times of the order of milliseconds [42]. Also colloids can also be
made in which the particles are charged making them easily manipulatable by
suitable applied electric fields. Even if the particles are not charged they may
be moved through the action of applied fields using a phenomenon known as
dielectrophoresis which is the motion of polarized but electrically uncharged
particles in nonuniform electric fields [43]. In work that echoes the methods
of Pask nearly four decades ago, dielectrophoresis has beenused to grow tiny
gold wires through a process of self-assembly [44].

Langmuir-Blodgett films. Langmuir-Blodgett films are molecular mono-
layers of organic material that can be transferred to a solidsubstrate [45]. They
usually consist of hydrophillic heads and hydrophobic tails attached to the sub-
strate. Multiple monolayers can be built and films can be built with very ac-
curate and regular thicknesses. By arranging an electrode layer above the film
it seems feasible that the local electronic properties of the layers could be al-
tered. These systems look like feasible systems whose properties might be
exploitable through computer controlled evolution of the voltages.

Kirchoff-Lukasiewicz Machines. Work by Mills[46, 47] also demonstrates
the use of materials in computation. He has designed an ‘Extended Analog
Computer’ (EAC) that is a physical implementation of a Kirchhoff-Lukasiewicz
Machine (KLM)[46]. The machines are composed of logical function units
connected to a conductive media, typically a conductive polymer sheet. The
logical units implement Lukasiewicz Logic - a type of multi-valued logic[47].
Figure 2 shows how the Lukasiewicz Logic Arrays (LLA) are connected to
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the conductive polymer. The LLA bridge areas of the sheet together. The logic
units measure the current at one point, perform a transformation and then apply
a current source to the other end of the bridge.

Figure 2. Kirchhoff-Lukasiewicz Machine

Computation is performed by applying current sinks and sources to the con-
ductive polymer and reading the output from the LLAs. Different computa-
tions can be performed that are determined by the location ofapplied signals
in the conducting sheet and the configuration of the LLAs. Hence, compu-
tation is performed by an interaction of the physics described by Kirchoff’s
laws and the Lukasiewicz Logic units. Together they form a physical device
that can solve certain kinds of partial differential equations. Using this form
of analogue computation, a large number of these equations can be solved in
nanoseconds - much faster than on a conventional computer. The speed of com-
putation is dependent on materials used and how they are interfaced to digital
computers, but it is expected that silicon implementationswill be capable of
finding tens of millions of solutions to the equations per second.

Examples of computation so far implemented in this system include robot
control, control of a cyclotron beam [48], models of biological systems (in-
cluding neural networks) [49] and radiosity based image rendering.

One of the most interesting feature of these devices is the programming
method. It is very difficult to understand the actual processes used by the sys-
tem to perform computation, and until recently most of the reconfiguration has
been done manually. This is difficult as the system is not amenable to tra-
ditional software development approaches. However, evolutionary algorithms
can be used to automatically define the parameters of the LLAsand the place-
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ment of current sinks and sources. By defining a suitable fitness function, the
configuration of the EAC can be evolved - which removes the need for human
interaction and for knowledge of the underlying system.

Although it is clear that such KLMs are clearly using the physical properties
of a material to perform computation, the physical state of the material is not
reconfigured i.e. programmed, only the currents in the sheetare changed.

Evolution in materio is verified with liquid crystal

Harding [50] has verified Miller’s intuition about the suitability of liquid
crystal as an evolvable material by demonstrating that it isrelatively easy to
configure liquid crystal to perform various forms of computation.

In 2004, Harding constructed an analogue processor that utilizes the physi-
cal properties of liquid crystal for computation. He evolved the configuration
of the liquid crystal to discriminate between two square waves of many differ-
ent frequencies. This demonstrated, for the first time, thatthe principle of using
computer-controlled evolution was a viable and powerful technique for using
non-silicon materials for computation. The analogue processor consists of a
passive liquid crystal display mounted on a reconfigurable circuit, known as
an evolvable motherboard. The motherboard allows signals and configuration
voltages to be routed to physical locations in the liquid crystal.

Harding has shown that many different devices can be evolvedin liquid
crystal including:

Tone discriminator. A device was evolved in liquid crystal that could dif-
ferentiate many different frequencies of square wave. The results were
competitive, if not superior to those evolved in the FPGA.

Logic gates. A variety of two input logic gates were evolved,showing
that liquid crystal could behave in a digital fashion. This indicates that
liquid crystal is capable of universal computation.

Robot controller. An obstacle avoidance system for a simpleexploratory
robot was evolved. The results were highly competitive, with solutions
taking fewer evaluations to find compared to other work on evolved robot
controllers.

One of the surprising findings in this work has been that it turns out to
be relatively easy to evolve the configuration of liquid crystal to solve tasks
i.e. only 40 generations of a modest population of configurations are required
to evolve a very good frequency discriminator, compared to the thousands of
generations required to evolve a similar circuit on an FPGA.This work has
shown that evolving such devices in liquid crystal is easierthan when using
conventional components, such as FPGAs. The work is a clear demonstration
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that evolutionary design can produce solutions that are beyond the scope of
human design.

3. Evolution In Materio using Liquid Crystal:
Implementational details

An evolvable motherboard(EM)[23] is a circuit that can be used to investi-
gate intrinsic evolution. The EM is a reconfigurable circuitthat rewires a cir-
cuit under computer control. Previous EMs have been used to evolve circuits
containing electronic components [23, 51] - however they can also be used
to evolve in materio by replacing the standard components with a candidate
material.

An EM is connected to an Evolvatron. This is essentially a PC that is used to
control the evolutionary processes. The Evolvatron also has digital and analog
I/O, and can be used to provide test signals and record the response of the
material under evolution.

Figure 3. Equipment configuration

The Liquid Crystal Evolvable Motherboard (LCEM) is circuitthat uses four
cross-switch matrix devices to dynamically configure circuits connecting to
the liquid crystal. The switches are used to wire the 64 connections on the
LCD to one of 8 external connections. The external connections are: input
voltages, grounding, signals and connections to measurement devices. Each of
the external connectors can be wired to any of the connections to the LCD.

The external connections of the LCEM are connected to the Evolvatron’s
analogue inputs and outputs. One connection was assigned for the incident
signal, one for measurement and the other for fixed voltages.The value of
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Figure 4. The LCEM

the fixed voltages is determined by the evolutionary algorithm, but is constant
throughout each evaluation.

Liquid Crystal Display

8x16 Analog Switch Array

8 External Connectors

LCD contacts,

32 per side 

- 64 in total.

Figure 5. Schematic of LCEM



18

In these experiments the liquid crystal glass sandwich was removed from the
display controller it was originally mounted on, and placedon the LCEM. The
display has a large number of connections (in excess of 200),however because
of PCB manufacturing constraints we are limited in the size of connection we
can make, and hence the number of connections. The LCD is therefore roughly
positioned over the pads on the PCB, with many of the PCB pads touching
more than 1 of the connectors on the LCD. This means that we areapplying
configuration voltages to several areas of LC at the same time.

Unfortunately neither the internal structure nor the electrical characteristics
of the LCD are known. This raises the possibility that a configuration may be
applied that would damage the device. The wires inside the LCD are made
of an extremely thin material that could easily be burnt out if too much cur-
rent flows through them. To guard against this, each connection to the LCD is
made through a 4.7Kohm resistor in order to provide protection against short
circuits and to help limit the current in the LCD. The currentsupplied to the
LCD is limited to 100mA. The software controlling the evolution is also re-
sponsible for avoiding configurations that may endanger thedevice (such as
short circuits).

It is important to note that other than the control circuitryfor the switch
arrays there are no other active components on the motherboard - only analog
switches, smoothing capacitors, resistors and the LCD are present.

Stability and Repeatability Issues. When the liquid crystal display is ob-
served while solving a problem it is seen that some regions ofthe liquid display
go dark indicating that the local molecular direction has been changed. This
means that the configuration of the liquid crystal is changing while signals
are being applied. To draw an analogy with circuit design, the incident sig-
nals would be changing component values or changing the circuit topology,
which would have an effect on the behaviour of the system. This is likely to
be detrimental to the measured performance of the circuit. When a solution is
evolved, the fitness function automatically measures it stability over the period
of the evaluation. Changes made by the incident signals can be considered part
of the genotype-phenotype mapping. Solutions that cannot cope with their ini-
tial configurations being altered will achieve a low score. However, the fitness
function cannot measure the behaviour beyond the end of the evaluation time.
Therein lies the difficulty, in evolution in materio long term stability cannot be
guaranteed.

Another issue concerns repeatability. When a configurationis applied to the
liquid crystal the molecules are unlikely go back to exactlywhere they were
when this configuration was tried previously. Assuming, that there is a strong
correlation between genotype and phenotype, then it is likely that evolution
will cope with this extra noise. However, if evolved devicesare to be useful



Evolution In Materio 19

one needs to be sure that previously evolved devices will function in the same
way as they did when originally evolved.

In [27] it is noted that the behavior of circuits evolved intrinsically can be
influenced by previous configurations - therefore their behavior (and hence fit-
ness) is dependent not only on the currently evaluated individuals configuration
but on those that came before. It is worth noting that this is precisely what hap-
pens in natural evolution. For example, in a circuit capacitors may still hold
charge from a previously tested circuit. This charge would then affect the cir-
cuits operation, however if the circuit was tested again with no stored charge a
different behavior would be expected and a different fitnessscore would be ob-
tained. Not only does this effect the ability to evolve circuits, but would mean
that some circuits are not valid. Without the influence of thepreviously evalu-
ated circuits the current solution may not function as expected. It is expected
that such problems will have analogies in evolution in materio. The config-
urations are likely to be highly sensitive to initial conditions (i.e. conditions
introduced by previous configurations).

Dealing with Environmental Issues. A major problem when working with
intrinsic evolution is separating out the computation allegedly being carried
out by the target device, and that actually done by the material being used.
For example, whilst trying to evolve an oscillator Bird and Layzell discovered
that evolution was using part of the circuit for a radio antenna, and picking up
emissions from the environment [22]. Layzell also found that evolved circuits
were sensitive to whether or not a soldering iron was pluggedin (not even
switched on) in another part of the room![23].

An evolved device is not useful if it highly sensitive to its environment in
unpredictable ways, and it will not always be clear what environmental effects
the system is using. It would be unfortunate to evolve a device for use in a
space craft, only to find out it fails to work once out of range of a local radio
tower!

To minimise these risks, we will need to check the operation of evolved
systems under different conditions. We will need to test thebehavior of a
device using a different set up in a different location. It will be important to
know if a particular configuration only works with one particular sample of a
given material.

The Computational Power of Materials

In [52] Lloyd, argued that the theoretical computing power of a kilogram of
material is far more than is possible with a kilogram of traditional computer.
He notes that computers are subject to the laws of physics, and that these laws
place limits on the maximum speed they can operate and the amount of in-
formation it can process. Lloyd shows that if we were fully able to exploit
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a material, we would get an enormous increase in computing power. For ex-
ample, with 1 kilogram of matter we should be able to perform roughly5x10

50

operations per second, and store10
31 bits. Amazingly, contemporary quantum

computers do operate near these theoretical limits[52].
A small amount of material also contains a large number of components (re-

gardless of whether we consider the molecular or atomic scale). This leads to
some interesting thoughts. If we can exploit materials at this level, we would
be able to do a vast amount of computation in a small volume. A small size also
hints at low power consumption, as less energy has to be spentto perform an
operation. Many components also provides a mechanism for reliability through
redundancy. A particularly interesting observation, especially when considered
in terms of non Von-Neumann computation, is the massive parallelism we may
be able to achieve. The reason that systems such as quantum, DNA and chem-
ical computation can operate so quickly is that many operations are performed
at the same time. A programmable material might be capable ofperforming
vast numbers of tasks simultaneously, and therefore provide a computational
advantage.

In commercial terms, small is often synonymous with low cost. It may
be possible to construct devices using cheaply available materials. Reliability
may not be an issue, as the systems could be evolved to be massively fault
tolerant using their intrinsic redundancy. Evolution is capable of producing
novel designs. Koza has already rediscovered circuits thatinfringe on recent
patents, and his genetic programming method has ‘invented’brand new circuit
designs [53]. Evolving in materio could produce many novel designs, and
indeed given the infancy of programmable materials all designs may be unique
and hence patentable.

4. Future Directions

The work described here concerning liquid crystal computational devices is
at an early stage. We have merely demonstrated that it is possible to evolve con-
figurations of voltages that allow a material to perform desired computations.
Any application that ensues from this work is unlikely to be areplacement for
a simple electronic circuit. We can design and build those very successfully.
What we have difficulty with is building complex, fault tolerant systems for
performing complex computation. It appears that nature managed to do this. It
used a simple process of a repetitive test and modify, and it did this in a uni-
verse of unimaginable physical complexity. If nature can exploit the physical
properties of a material and its surroundings through evolution, then so should
we.

There are many important issues that remain to be addressed.Although we
have made some suggestions about materials worthy of investigation, it is at



Evolution In Materio 21

present unclear which materials are most suitable. An experimental platform
needs to be constructed that allows many materials to be tried and investigated.
The use of microelectrode arrays in a small volume containerwould allow this.
This would also have the virtue of allowing internal signalsin the materials to
be inspected and potentially understood.

We need materials that are rapidly configurable. They must not be frag-
ile and sensitive to minute changes in physical setup. They must be capable
of maintaining themselves in a stable configuration. The materials should be
complex and allow us to carry out difficult computations moreeasily than con-
ventional means. One would like materials that can be packaged into small
volumes. The materials should be relatively easily interfaced with. So far,
material systems have been configured by applying a constantconfiguration
pattern, however this may not be appropriate for all systems. It may be neces-
sary to put the physical system under some form of responsivecontrol, in order
to program and then keep the behavior stable.

We may or may not know if a particular material can be used to perform
some form of computation. However, we can treat our materialas a “black
box”, and using evolution as a search technique, automatically discover what,
if any, computations our black box can perform. The first stepis to build an
interface that will allow us to communicate with a material.Then we will use
evolution to find a configuration we can apply using this platform, and then
attempt to find a mapping from a given problem to an input suitable for that
material, and a mapping from the materials response to an output. If this is
done correctly, we might be automatically able to tell if a material can perform
computation, and then classify the computation.

When we evolve in materio, using mappings evolved in software, how can
we tell when the material is giving us any real benefit? The lesson of evolution
in materio has been that the evolved systems can be very difficult to analyze,
and the principal obstacle to the analysis is the problem of separating out the
computational role that each component plays in the evolvedsystem. Theses
issues are by no means just a problem for evolution in materio. They may be
an inherent part of complex evolved systems. Certainly the understanding of
biological systems are providing immense challenges to scientists.

The single most important aspect that suggests that evolution in materio has
a future is that natural evolution has produced immensely sophisticated mate-
rial computational systems. It would seem foolish to ignorethis and merely try
to construct computational devices that operate accordingto one paradigm of
computation (i.e. Turing). Oddly enough, it is precisely the sophistication of
the latter that allows us to attempt the former.
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5. Further Reading

These are just cites placed so that they are included in the bibliography.
They will need to be moved to a 2nd bibliography later.

[47, 49, 48, 17, 16, 54] [19, 55–57] [58, 52]
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