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Abstract

Various techniques for statistical analysis of the structure of �tness landscapes have been
proposed. An important feature of these techniques is that they study the ruggedness of
landscapes by measuring their correlation characteristics. This paper proposes a new infor-
mation analysis of �tness landscapes. The underlying idea is to consider a �tness landscape
as an ensemble of objects that are related to the �tness of neighboring points. Three
information characteristics of the ensemble are de�ned and studied. They are termed:
information content, partial information content, and information stability. The information
characteristics of a range of landscapes with known correlation features are analyzed in an
attempt to reveal the advantages of the information analysis. We show that the proposed
analysis is an appropriate tool for investigating the structure of �tness landscapes.
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1 Introduction

The notion of a �tness landscape, introduced by Wright (1932), has become an important
concept in evolutionary computation. Three components constitute a �tness landscape.
The �rst is a set of genotypes. The second is a mapping that associates a numerical value
to each genotype, known as a �tness function. The �nal component is an operator that
de�nes a neighborhood relationship within the set of genotypes (Jones, 1995). Recently,
the landscapes of a range of problems of known dif�culty have been analyzed in an attempt
to determine the relation between the landscape structure and the performance of the
evolutionary algorithms (EAs) (Goldberg, 1989; Grefenstette and Baker, 1989; Lipsitch,
1991; Manderick et al., 1991; Mitchell et al., 1991; Horn and Goldberg, 1995). In this
paper, a new method for analysis of the structure of �tness landscapes is explored. The aim
is to de�ne a measure that could give us more information about the landscape structure
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than is available using known statistical analysis techniques (Weinberger, 1990; Hordijk,
1996). Such an information measure has been proposed (Vassilev, 1997b) and has been used
to evaluate a study of a landscape smoothing technique (Vassilev, 1997a), which was itself
inspired by the idea that a landscape can be considered as a superposition of smoother sub-
landscapes (Stadler, 1995; Slavov and Nikolaev, 1999). Here the original idea of information
analysis (Vassilev, 1997a) has been extended. The analysis has been applied to a number of
landscapes to explore their structure and, thus, to reveal the advantages of the approach.

A number of techniques for a correlation analysis of the structure of landscapes have
been developed. Weinberger (1990) investigated how the autocorrelation function of �t-
ness values of points in a random walk related to the ruggedness of a landscape. The
autocorrelation function of random walks for various landscapes has also been explored
by Manderick et al. (1991). Together with the correlation length, they examined the �t-
ness correlation coef�cient of the corresponding evolutionary operators. Lipsitch (1991)
applied a modi�cation of the correlation analysis to landscapes generated by iterations of
elementary cellular automata. The intention was to explore the relationship between the
nature of the local interactions of neighboring genes, the characteristics of the generated
landscapes, and the adaptive capabilities of the populations on these landscapes. Another
landscape analysis method, based on correlation, has been proposed by Hordijk (1996). He
used the Box and Jenkins (1970) approach on a statistical time series in order to extend the
correlation analysis proposed by Weinberger (1990).

The work, reported here, studies a different analysis of the structure of �tness land-
scapes called information analysis. It is inspired by the concept that in algorithmic informa-
tion theory (Chaitin, 1987), the information content of an individual system is a measure of
how dif�cult it is to describe that system. Others take the information content to de�ne a
measure of the ruggedness of a system (Theiler, 1990; Barnsley, 1993).

The information analysis is based on the assumption that each �tness landscape can be
considered as an ensemble of various objects, which are characterized by their size, form,
and distribution. To analyze these characteristics we de�ne three information features of
landscapes. These are called information content, partial information content, and information
stability. The �rst two are based on measures of the amount of information contained in the
ensemble of objects. Each object consists of a point in the �tness landscape and its nearest
neighbors. The information stability is the highest possible difference in the �tness values
of two neighboring points. It can be inferred from a process of �ltering out the information
content. These features allow us to obtain information about the structure of the landscapes
that cannot be given by the other analysis methods.

An important assumptionmade here is that the �tness landscapes are statistically isotropic.
A landscape is statistically isotropic when the sequence of �tness values, obtained by a
random walk on the landscape, forms a stationary random process for the assumed joint
distribution of �tness values.

Section 2 introduces the concept of landscapes. It also gives a brief description of the
N model of tunably rugged landscapes and includes a discussion of some recently used
statistical landscape analysis techniques. Section 3 presents the information analysis. In
Section 4, we apply the analysis to N landscapes and study their structure. The generality
and the advantages of the information analysis are discussed in Section 5. The section also
gives an example of how the analysis can lead to a better understanding of the nature of
evolutionary processes in the case of digital circuit design (Miller et al., 1997). Conclusions
are given in Section 6.
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2 Fitness Landscapes

The �tness landscapes are search spaces de�ned over elements called phenotypes that are
represented by their genotype. A �tness value is assigned to each genotype, and it re�ects
on the ability of the phenotype to survive and reproduce. The �tness value of a genotype
is evaluated by a �tness function that measures how good the encoded phenotype is. We
denote the set of all genotypes by and de�ne their �tness values to be real numbers on
the interval . Thus, a �tness function is de�ned as

(1)

In an evolutionary search, the relations between points on the landscape are de�ned by the
nature of the evolutionary operator that is used to move over the landscape. The operator

acts on a -tuple of members from and produces an -tuple of genotypes. A pair of
genotypes will be related when the genotypes can be reached from one another by applying
the evolutionary operator to the corresponding landscape points exactly once. In its most
general form, a landscape is a directed graph whose vertices, ,
are genotypes labeled with �tness values and whose edges, , are connections
between the genotypes. The connections are de�ned by the evolutionary operator (Jones,
1995). The sets and are de�ned as

(2)

where is either or , and assign a �tness value to each vertex. The described
model has two important advantages. First, it allows us to de�ne terms such as local and
global optimum, neighborhood, basin of attraction, etc. (Appendix A). Second, it allows us
to associate unique �tness landscapes with speci�c evolutionary operators in agreement with
the concept “one operator, one landscape” (Jones, 1995). Primarily, this paper considers
simple landscapes associated with a bit�ip operator. In this case, each landscape point is
a genotype, and two genotypes are neighbors if they differ in a single gene. However, in
Section 5 we consider a much more involved model in which both mutation and crossover
landscapes are investigated.

The structure of �tness landscapes in�uences the ability of an evolutionary algorithm
to perform an ef�cient search (Kauffman, 1989; Manderick et al., 1991; Mitchell et al.,
1991). There are several characteristics associated with the landscape optima that de�ne
the structure of �tness landscapes. These are their number, type, magnitude, and the sizes
of their basins of attraction. These characteristics are well known in the Evolutionary
Computation community. They have been studied in investigations of the landscape de-
ceptiveness (Goldberg, 1987, 1989), modality (Altenberg, 1995; Horn and Goldberg, 1995),
and ruggedness (Kauffman, 1989; Weinberger, 1990) in order to understand the nature of
evolutionary search under different conditions.

There are various techniques for studying the structure of landscapes, and a number of
models with tunable ruggedness have been proposed. These are discussed in the following
two subsections.

2.1 Tunably Rugged Landscapes

A model of landscapes with tunable ruggedness, known as N landscapes, has been proposed
by Kauffman (1989) in order to explore the relationship between the local interactions
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among the genes in genotypes and the population �ow on rugged landscapes. The N
model represents a family of landscapes with tunable ruggedness de�ned by two parameters:
the length of the genotype, , and the number of genes that epistatically in�uence each
gene, ( ). The �tness of each genotype, , is the mean of �tness
contributions of the genes and is given by

(3)

where the �tness contribution of the gene is formed by the allele and others that
could be either the nearest neighbors (adjacent neighborhood model) or randomly chosen
genes (random neighborhood model). Therefore, for each locus, a table of elements
is generated that determines the �tness contribution of the locus.

It has been demonstrated that when the parameter is increased towards the �tness
landscape ruggedness also increases (Kauffman, 1989; Weinberger, 1990). Thus, when

, each �tness contribution depends only on the corresponding gene. There is a
single optimum, and it is reachable from all other genotypes via hillclimbing. The �tness
difference between neighboring genotypes is small, and, therefore, the landscape is smooth.
For the epistasis in the genotypes is high. The expected number of local optima
is , and the landscape is maximally rugged. The relationship between the parameter

and the landscape ruggedness is given by the autocorrelation function . The exact
forms of for both the random and the adjacent neighborhood models are given by

(4)

and

(5)

respectively, where is the Hamming distance (Weinberger and Stadler, 1993; Stadler,
1995; Altenberg, 1997).

2.2 Landscape Analysis Techniques

The structure of a �tness landscape can be investigated by measuring the degree of cor-
relation between points on the landscape (Weinberger, 1990; Lipsitch, 1991; Manderick
et al., 1991; Hordijk, 1996). The degree of correlation between landscape points depends
on the difference between their �tness values. The smooth landscapes are highly correlated
because the landscape points have similar �tness values. If the �tness difference is high, the
landscape is rugged, and the correlation is low. Therefore, if we measure the correlation
between points, we can assess the landscape ruggedness.

Another model of tunably rugged landscapes has been proposed by Lipsitch (1991). His model is also based on
the local interactions within the genotypes. Brie�y, the landscapes are constructed by estimating the phenotypes
created through iterations of elementary cellular automata (Gutowitz, 1991) initialized with genotypes. The
ruggedness can be tuned by a special parameter that determines the amount of information in the automata
transition rule (Langton, 1990; Li et al., 1990). Using this parameter, Li et al. (1990) have divided the elementary
cellular automata rules into six classes. These classi�cations are based on the differences in the behavior of
elementary cellular automata. Lipsitch (1991) has shown that �tness landscapes can be classi�ed according to the
classi�cation of cellular automata rules that generate them. Unfortunately, this model has not been investigated
enough and, therefore, we �nd it inappropriate to use in this paper.
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A technique for studying correlation in a �tness landscape has been proposed by
Weinberger (1990). He generates a sequence of �tness values, , by a random walk
on the landscape using a bit�ip operator and examines the autocorrelation function

(6)

where and are the expectation and the variance, respectively, of the time series.
The autocorrelation function indicates the correlation between points that are separated by
a distance . Another measure suggested by Weinberger (1990) is correlation length. This
is the distance beyond which the majority of points become uncorrelated. Because of the
exponential decay of the correlation, Weinberger (1990) de�nes the correlation length as
follows:

(7)

where is the autocorrelation (Equation 6) of neighboring points. Thus, the autocor-
relation function calculated on a time series obtained by a random walk on a N landscape
should empirically correspond to the ruggedness of the landscape. The plots, depicted in
Figure 1, show the autocorrelation functions of N landscapes with random neighborhoods
for and , and their correlation lengths. These were calculated
on random walks of steps (the random walks are performed by a bit�ip operator).
The �gure reveals that the correlation decreases as is increased, which agrees with our
expectations.
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Figure 1: Correlation characteristics of N landscapes with random neighborhoods for
and different values of : (a) autocorrelations and (b) correlation lengths.

Various modi�cations of the correlation analysis have been devised. Manderick et al.
(1991) suggested, together with the autocorrelation function and a modi�ed form of the
correlation length (the distance for which the autocorrelation function is ), that one could
calculate an estimate of a correlation coef�cient associated with the evolutionary operator. The
correlation coef�cient is de�ned as follows:

(8)
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where is a set of �tness values of genotypes within the population. is the
covariance between and , and is the variance (in the original de�nition is ).
Thus, the correlation between two populations separated by applications of the evolution-
ary operator can be assessed. Note that the correlation coef�cient from Equation 8, which
was originally de�ned as an estimate of the usefulness of the corresponding evolutionary
operator, is indirectly related to the structure of the landscape. Now we de�ne a simple cor-
relation analysis based on these ideas. The aim is to show that the aforementioned analysis
technique leads to similar conclusions to those found by Weinberger (1990). We propose
to measure the relationship of the distance between the populations and their correlation
coef�cient, where the distance is the number of applications of the bit�ip operator to a
randomly chosen population. Thus, we de�ne a population correlation function as

(9)

We use a similar de�nition of the correlation length to that of Manderick et al. (1991).
The correlation length now is de�ned to be the distance for which . As before,
we calculate the population correlation functions and correlation lengths of N landscapes
with random neighborhoods, and . The correlations are computed
on random walks of a population with size (the random walks are performed by a
bit�ip operator applied to each element of the population). The plots, depicted in Figure 2,
reveal a similar correlation structure to that shown in Figure 1. Thus, we conclude that the
two analyses ultimately do not fundamentally differ.
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Figure 2: Correlation characteristics of N landscapes with random neighborhoods for
and different values of : (a) population correlations and (b) correlation lengths

(Equation 9).

Another interesting approach is the statistical analysis proposed by Hordijk (1996)
who used the Box and Jenkins (1970) approach in order to extend the correlation analysis of
Weinberger (1990). The idea of utilizing the time series analysis to explore the structure of
landscapes is not unknown. It has been suggested by Weinberger (1990), who asserts that
the autoregressive (AR) model of order captures the statistics of walks on the N landscapes,
and, therefore, the AR(1) model is applicable to the N landscapes. Hordijk’s analysis is
different. He proposes time series analysis to be the autoregressive moving-average (ARMA)
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model, an extension of the AR model. The analysis gives us the autocorrelations together
with a stochastic model that describe the time series more accurately.

3 Information Analysis

We have seen that the correlation analyses have been used to study the structure of �tness
landscapes. Unfortunately, they do not go far enough and give us only a vague notion of the
structure of the landscapes. The landscape is a structure involving a number of important
features. To analyze them, we consider that a �tness landscape can be seen as an ensemble
of basic objects each of which is represented by a point and the possible outcomes that may
be produced by the corresponding evolutionary operator at that point. There are several
kinds of objects, and they can be classi�ed into three principal classes: �at areas (each point
together with its neighbors have the same �tness), isolated points (each point has higher
or lower �tness than all its neighbors), and a third class of all points that are neither �at
nor isolated points. We propose three information measures that characterize the structure
of a �tness landscape de�ned over a time series obtained by a walk on the landscape. The
information measures are:

1. Information content that is an entropic measure of the time series.

2. Partial information content that relates to the modality encountered on the landscape
path.

3. Information stability that is the highest �tness difference between neighboring points
reached in the time series.

In general, the information content of a system can be regarded as the amount of
information that is required to reconstruct the system exactly. There are two aspects to
this: the number of states and the distribution of elements among the states in a system.
Consider one extreme where the elements of a system are in the same state. To reconstruct
the system we merely have to de�ne the state of a single element and replicate that for all
remaining elements. In the other extreme, where the elements of the system are in com-
pletely different states, the amount of information needed to describe the system could be
enormous. Classical information theory captured one aspect of this where the information
content was de�ned as a function of the distribution of the elements over the states of a
system. This is also known as the Shannon entropy (Shannon, 1948). The entropy has been
also used as a basic concept in quantifying the fractal dimension of a system as a measure
of its ruggedness (Theiler, 1990; Barnsley, 1993). Another aspect of information content is
captured by algorithmic information theory (Chaitin, 1987). The information content of
an object has been de�ned as the smallest number of bits required by a program to print
out the object. The measures proposed above in the information analysis of a landscape are
inspired by these two concepts, and they come to characterize the distribution (information
content) and the number (partial information content) of the optima encountered in a walk
on the landscape.

The distribution of local optima on a landscape is itself composed of two aspects.
First is the variety of “shapes” on the landscape. This relates to the local neighborhood
of a landscape point and is captured by the suggested information content. Second is the
magnitude of the landscape optima. The upper bound of this aspect is captured by the
information stability.
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Of themselves these three information characteristics, though interesting, do not
markedly specify the structure of a landscape any more exactly than the correlation analysis.
Thus, we pose the following question: is it possible that by altering the natural scale by
which we observe a landscape (to ignore certain non-essential features), we can learn more
about the landscape structure? We try to answer this question in the next section.

3.1 Information Characteristics of Landscapes

Consider a sequence of �tness values , which are real numbers taken from the
interval and obtained by a walk on a landscape . The sequence is a time series that
represents a path in and contains information about the structure of the landscape. The
aim is to extract this information by representing the time series as an ensemble of objects.
The ensemble can be de�ned as a string of symbols given
by

(10)

where
if
if
if

(11)

for any �xed . The parameter is a real number taken from the interval , where
is the length of the interval . Note that the parameter determines the accuracy of

calculation of the string . If , the function will be very sensitive to the
differences between the �tness values, and will be determined as precisely as possible.
When the parameter is , will be a string of s.

The string contains information about the structure of the landscape. Note that
the function associates each edge of the path with an element from the set .
Each object of the path is represented by a string, , which is a sub-block of length
two of the string . One can think of as a sequence of elements (a sample) of the
incidence matrix of the landscape underlying graph. The incidence matrix of a landscape
is related to the landscape’s graph Laplacian matrix whose eigenvectors are the orthogonal
basis of eigenfunctions of the Fourier transform of the landscape (Stadler, 1995).

3.1.1 Information Content

We de�ne an entropic measure of the ensemble of the sub-blocks of length two of string
. This is

(12)

and is referred to as the information content. The measure is an estimate of the variety of
“shapes” in the ensemble, and, thus, it characterizes the ruggedness of the landscape path
that is represented by with respect to the �at areas in the path. The probabilities
are frequencies of the possible blocks of elements from set . They are de�ned as

(13)

where is the number of occurrences of in . Note that the sum in Equation 12
is taken over sub-blocks of that are composed of two different symbols. Hence, the
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inequality
(14)

is ful�lled. The aim is to de�ne the entropic measure with respect to the relation between
the number of the objects for which and the number of all possible sub-blocks of
length two of string .

The logarithm from Equation 12 is taken with base six since this is the number of blocks
composed by two different symbols taken from . In this way, the information content
is scaled in the interval . In our calculations below, the string is considered with
periodic boundary conditions since the investigated landscapes are assumed to be statistically
isotropic.

3.1.2 Partial Information Content

An important feature of the landscape path that is related to its ruggedness is the
modality of the path. This can be assessed by measuring the amount of information of the
ensemble that is represented by the string in a new way. Note that the modality of
a landscape path cannot be characterized by its information content since this is an
estimate of the diversity of objects associated with the landscape optima. To explore the
modality of a path sampled by a walk on a landscape, we assume that this is a character-
istic related only to the number of optima in the path. Thus, the objects are de�ned to
be the optima, irrespective of the fact that they might be isolated optima, plateaus, etc.
(Appendix A).

Consider the string that is associated with the time series . We construct
a new string of elements from in the following way: is empty if is a
sequence of s; otherwise it is de�ned as where , and
for . Thus, by ignoring a certain non-essential part of , we obtain string
with length , and the quantity indicates the modality of the landscape path. Note that
the string has the form “ ”, and this is the shortest string that represents the
slopes of the corresponding landscape path. For instance, if the landscape path is maximally
multimodal, could not be modi�ed, and its length will remain unchanged. The length
of scaled in the interval is called partial information content and it is given by

(15)

where is the length of . De�ne the function to count the slopes of the
optima that are represented by string as

if
if and
if , and
otherwise

(16)

The evaluation of can now be written as . The partial information content
is when the landscape path is �at and there are no slopes in the path. When the

landscape path is maximally multimodal, is . For a given partial information content
, the number of optima of the corresponding landscape path can be calculated as

.
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An important assumption made here is that the elements of are instances of slopes
with different characteristics, such as length and angle. In fact, the diversity of slopes can
be studied by moving the parameter . This is considered in the following section.

3.1.3 Information Stability

The information content and the partial information content characterize the time series
with a certain accuracy. The accuracy of the estimations depends on the parameter

that in turn de�nes two functions of the information measures versus accuracy. One
can think of the parameter as a magnifying glass through which the landscape can be
observed. For small values of , the function from Equation 11 will be very sensitive
to the difference between the �tness values, i.e., the glass will make each element of the
landscape visible. If is zero, then the accuracy of the estimations of and is
high. In contrast, for , the information content and the partial information content
of are , i.e., for such , the landscape path will be determined as completely �at. The
role of the parameter is illustrated in Figure 3 where the landscape pro�le for different
values of is shown.
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Figure 3: The pro�le of a landscape path for different values of parameter : (a) , (b) ,
(c) , and (d) .

The smallest value of for which the landscape becomes �at is called the information
stability. This is the value for which is a string of s.

3.2 Information Characteristics of a Simple Landscape Path

This section gives a simple illustration of an estimation of the information charac-
teristics for a sequence of �tness values. Consider a sequence

of values from the interval . To calculate the informa-
tion characteristics and for a given value of , we need to construct the string

for this ( ). For instance, let be . According to the
formulae from Equations 10 and 11, the elements , , and are the symbol ; and

are the symbol since , , and are less than , and
and are greater than , respectively. Hence, the string is .
We now calculate the probabilities for each and , where . In this particular
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Table 1: Information characteristics of the landscape path (Section 3.2).

example, we are only interested in the frequencies of sub-blocks and since symbol is
not represented in . The number of occurrences of block in is equal to ,
which is also the number of occurrences of ( ). The evaluation of
and is illustrated by

001010 and 001010 (17)

Since the string is taken with periodic boundary conditions, we consider that the �rst
number is also last (in Equation 17 it is the number that is given in the end of the strings
with non-bold type). Consequently, the probabilities and are each since the
number of all sub-blocks of length two of is equal to . Thus, the information content is

, which is approximately .

To estimate the partial information content we apply the formula from Equation 16
to the string . The partial information content is , where

is .

The information characteristics of the landscape path for different values of are given
in Table 1. The information stability is comparatively high (approximately ), and the
information content is zero. Consequently, the landscape path is smooth, however,
not �at since . The partial information content is . This implies
a slope in the landscape path.

3.3 Properties of the Information Characteristics

For a better understanding of the information characteristics, some interesting properties
are given below.

1. For each sequence of �tness values, the information stability can always be calculated.
This follows from the de�nition of string . Since is a string of s, we conclude
that .

2. Let be the information stability of a sequence of �tness values. The information
content and the partial information content are equal to zero for each greater than

, i.e., . Therefore, it is unnecessary to calculate the information
characteristics for .
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3. In the case of a regular walk on a landscape, the information content and the partial
information content of the time series become positive constants for each .
Note that the term regularity has nothing to do with the notion of regular graphs. We
say that a time series is generated by a regular walk on a landscape when the
time series obeys

(18)

where is a constant and is a variable that can be , , or . A landscape path
is generated by an irregular walk when the condition in Equation 18 is not ful�lled.
In practice, it is rare to encounter purely regular walks on a landscape. The walks
usually have a low degree of regularity. If we consider Equation 18 in the form

where are different constants, then the degree of regularity of
a landscape is given by the number of different , that is, the number of all possible
differences of �tness values.

4. There can exist a sequence of �tness values, and parameters and , for which
, where . A typical example for which

and is the path with information characteristics shown in Table 3.2. The
landscape paths associated with this class are characterized by relatively small �at
landscape areas. For such paths, is an increasing function for low values of
since each path as an ensemble consists mainly of two types of objects. We say that the
�at landscape areas prevail over the ruggedness in a time series if is a decreasing
function.

5. The partial information content decreases toward as increases, and the steepness
of the function indicates the diversity of the optima when they are classi�ed by
their magnitude.

3.4 Information Characteristics and Landscape Modality

The modality of �tness landscapes is an important feature that strongly in�uences the ability
of an evolutionary algorithm to search. Unfortunately, however, the relationship between
modality and search is still vague. For instance, contrary to our expectations, it has been
shown that unimodal landscapes could be hard for climbing (Horn and Goldberg, 1995), and
highly multimodal landscapes could be transformed to easy ones for evolutionary search (Al-
tenberg, 1995). On the other hand, there are not, at present, appropriate statistical analysis
methods that could be used to perform an accurate study of this landscape characteristic.
The impediments that might be faced in a study of the modality of a landscape are twofold:
�rst, to choose an appropriate walk on the landscape and, thus, to generate a time series of
�tness values that can give us information about this landscape feature; second, to choose an
appropriate method for analysis of the time series. In this section we are interested in how
the information characteristics, introduced above, are related to the modality of a landscape
path without paying attention to the algorithm that generates the time series.

We consider that the modality is a landscape feature that is related to three basic
characteristics of the local optima: the number of local optima, the number of groups of local
optima, and the degree of isolation of the local optima. The relation between the number
of local optima and the landscape modality is straightforward. A landscape is unimodal,
bimodal, or multimodal when the number of optima is one, two, or more, respectively.
However, landscapes that have equal numbers of optima do not present identical dif�culty
for an evolutionary search algorithm. In order to distinguish such landscapes we consider
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that the landscape modality is also related to the size of the basins of attraction of the optima,
that is, the degree of isolation of the optima (Appendix A) and the �at �tness landscape areas
that are de�ned by the number of groups of optima. We say that peaks compose a group of
optima if they are surrounded by a �at landscape area. We assume that to de�ne an analysis
of the landscape modality we must be able to investigate these local optima characteristics.

Now, using the described information characteristics, we intend to explore the modality
of a simple example of a landscape path that is composed of groups of isolated optima. The
aim is to attain understanding of how the information characteristics are related to the
modality of the path.

Consider a time series obtained by a walk on a landscape. Let us assume that for a
certain value of the parameter , the landscape path that originates from the corresponding
ensemble of objects is constituted from groups of isolated optima. The path is simply the
string , and it has the form

(19)

Each group of optima starts and �nishes with the blocks and , respectively. We require
symbol in order to specify the existence of a group of optima. The asymmetry “ ”
in our simple example appears to assure us that peaks exist in the landscape path.

The calculation of the information content and the partial information content of
is straightforward. Let , , and be the number of peaks, the number of groups, and
the length of , respectively, where . Then the probabilities and

are equal to and , respectively, and the probabilities and are equal
to . Considering the formulae from Equations 12 and 15, we obtain that the information
content is

(20)

and the partial information content is

(21)

The relationship between the information content and the parameters and is shown in
Figure 4. The depicted plots represent the information content versus the number of groups
of peaks for different values of . The �gure reveals that for a certain number of groups
of peaks the information content increases with the number of peaks. The information
content also indicates how the peaks are grouped in the landscape path. Unfortunately,
however, this information characteristic cannot accurately quantify the numbers of peaks
and groups in the path. Figure 4 demonstrates that paths with different modality can
have equal information content. Even if we estimate the partial information content that
measures the number of peaks, different landscape paths with equal numbers of peaks may
have the same information content.

Another measure of the landscape path, represented as an ensemble of objects, that
may be useful in a study of the structure of a landscape is the estimate of the variety of �at
and smooth sections of the landscape. For us, these are the blocks , , and . Thus, we
propose the entropic measure

(22)
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Figure 4: The relationship between the information content and the number of peaks
and groups for .

which we call density-basin information. The probabilities are frequencies of sub-blocks
of the string (Equation 13). The motivation to introduce this coef�cient is twofold.

First is estimating the density of peaks. For instance, the density-basin information of is

(23)

and it decreases when the number of groups increases (for a �xed value of ), i.e., the
density of peaks becomes lower. Second is specifying whether the optima in the time series
are isolated. Note that the information characteristics and will remain unchanged
if we assume that the optima of are not isolated (the optima have the form “ ”).
Therefore, by increasing the basin of attraction of the peaks, we change the density-basin
information of a landscape path.

The information content and the density-basin information can be used to determine
whether a landscape path is maximally multimodal. Thus, we propose the following asser-
tion.

THEOREM 1: If and for , then the explored landscape path is either
maximally multimodal, or an increasing or decreasing step function.

Since and , it follows that each block of the string
is nonhomogeneous, i.e., there are no �at and smooth sections in the landscape

path. Furthermore, when is zero, the minimal information content of the path pre-
sented by is . This is due to the fact that the information content will be minimal
when and . Consequently, is the string , where , and

. It is evident that there are three possibilities for the explored path. The
path is

maximally multimodal when is and is ( is and is ).

an increasing step function when is and is ( is and is ).

a decreasing step function when is and is ( is and is ).
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The increasing and decreasing step functions are easy for evolutionary search since
the optimum is reachable by simple climbing and descending techniques, respectively.
Alternatively, the maximally multimodal landscapes are dif�cult for search. However, there
is a class of maximally multimodal landscapes that can be more easily searched. These are
the landscapes that allow regular adaptive walks (Equation 18). Thus, the aforementioned
assertion allows us to state the following: a landscape path is either maximally multimodal,
an increasing or decreasing step function and is easy for evolutionary search if
and for each , where is the information stability.

3.5 Information Analysis

The analysis starts by performing a walk on the landscape using the evolutionary operator
by which the neighborhood relationship of the landscape points is de�ned. For each step,
the �tness value of the current point is recorded. Thus, for a certain number of steps a
time series, will be obtained. Then the information functions and are
calculated. In addition, we obtain the information stability . We also suggest to calculate
the density-basin information . Note that the accuracy of this procedure depends on the
density of values of taken from the interval . A higher accuracy can be attained when
the values of are given by , where and such that

.

4 Information Analysis of the N Landscapes

In this section, we apply the information analysis to the N model (Section 2.1) in order to
investigate the structure of these landscapes. The aim is twofold: to illustrate the use of the
information analysis and to �nd out what the analysis can tell us about the structure of the
N landscapes.

Since the information analysis is based on the �tness difference of neighboring points,
we calculate the difference of a pair of genotypes at Hamming distance . Thus, for a pair
of genotypes and we obtain

(24)

where is a subset of loci that in�uence the �tness values when a genotype differs from
in one gene. If we denote then

(25)

Note that is a sequence of independent random variables from the interval
. Using Equation 25 we can suggest the following:

1. The information content is strongly dependent on the distribution of the sequence
, which is the distribution of the loci �tness values. Usually, it is a uniform or

U-shaped distribution (Kauffman, 1989) with mean . Hence, we can hypothesize that
the probabilities and are approximately
equal for each value of , and the probability is negligible for the
information content and the partial information content. Consequently, we expect the
N landscapes to be multi-peaked without �at landscape areas.
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2. The information stability is less than since

(26)

However, we expect the information stability to increase non-linearly as increases
because of the distribution of the sequence .

3. The information stability decreases toward as increases. The reason is twofold.
First, increasing the parameter causes the difference between the �tness values of
each pair of neighboring points to decrease at least with rate . Second, as the param-
eters and increase, with being proportional to , the sum becomes
smaller since the distribution of the set for large has mean . This is
known as complexity catastrophe (Kauffman, 1989). Consequently, when and both
increase, the difference between the �tness values of each pair of neighboring points
still decreases faster than . However, it is not clear how the information content will
change when the parameter is increased, and what will be the contribution of the
landscape objects to the information characteristics.

In order to reveal the “information” structure of the N landscapes, we perform two series
of experiments in which we explore how the information characteristics are related to the
parameters and . The next subsections give an experimental setup, followed by results
of the analysis for and .

4.1 Experimental Setup

We apply the information analysis to N landscapes using the random neighborhood model.
In our experiments, each landscape point is a genotype (a string of 0s and 1s), and two
genotypes are neighbors if they differ from one another in one gene (note that we investigate
the N model instead of the mutation and crossover landscapes generated by applying the
corresponding evolutionary operators to this search space). Since the underlying graph is
the Hamming graph, to perform a walk on the landscape we use a bit�ip operator starting
from a randomly chosen genotype.

As we mentioned above, we perform two series of experiments in which we study how
the information characteristics are changed when we vary the parameters and . In the
�rst series of experiments, is set to . We measure the information characteristics ,

, , and for each value of from to . We also calculate the information
functions and for . The results for each are calculated on
a random walk of steps (isotropy has been assumed). In order to investigate how
the modality of N landscapes is related to the parameter , we measure the information
content and the partial information content of time series obtained by a modi�cation of
the adaptive walks used by Kauffman (1989) and Weinberger (1990). The algorithm is
implemented as follows: start from a randomly chosen point on the landscape, generate all
neighbors of the current point, determine the �tness values of the neighbors, select a �tter
one at random, continue to move until reaching a maximum, then save the optimum and
move downhill in the same manner by choosing a worse neighbor at random. The walk
terminates after a given number of steps unless a previously visited optimum is reached.
The results for each are averaged over adaptive walks of no more than

steps (standard deviations are also given).
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The second series of experiments concern the question of how the information char-
acteristics relate to the N landscapes when we vary the length of the genotype, . We
measure the information characteristics , , , and for several values of
from to and . To investigate the complexity catastrophe phenomenon we vary
the parameter and calculate the information content and stability of several landscapes
under two conditions: �rst, a �xed value of ( ) and, second, different values of
( ). Again, the results for each pair of and are calculated on a random walk
of steps.

In our calculations, the parameter takes values from to given by , where ,
and is set to .

4.2 The Parameter and the Information Structure of N Landscapes
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Figure 5: The information characteristics of N landscapes with random neighborhoods for
versus epistatic loci: (a) information content , (b) partial information content

, (c) density-basin information , and (d) information stability.

The information characteristics of the N landscapes with random neighborhoods
for different are depicted in Figure 5. We can see that the information content ,
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the partial information content , and the information stability increase, and the
density-basin information decreases as the parameter increases. Consequently, the
landscapes become more rugged for higher values of . Note, however, that the information
content only increases over quite a small interval. This indicates that, by moving
from to , we do not change drastically the structural type of the landscapes. Note
that is close to , and is signi�cantly higher than for each value of . Thus,
given the assertion proposed in the previous section, we surmise that the N landscapes
are composed of two kinds of local optima, and the number of plateau forms is negligible
for our statistics. The conclusion is also supported by Table 2. The table represents the

Table 2: The probabilities of the landscape information objects for and different
values of , calculated on random walks of steps.

probabilities of landscape objects used in the calculations of the information characteristics
and . The results show that

and which is to be expected. Hence, if we look at the plots of
, , and we can surmise that, by increasing , we increase the number of local

optima (the plots of and ), and the landscape optima become more and more
isolated (the plot of ). At the same time, the difference between the �tness values of
the neighboring points become greater since the information stability increases (note that
these conclusions assume that there are no plateau forms in the N landscapes). To support
this, we calculate the information characteristics and of the time series obtained
by adaptive walks on the N landscapes for and . The results are
given in Table 3. Note that, as reaches , the modality of the landscapes increases,
however, when , the landscape is still not maximally multimodal.

Table 3: The information characteristics and of N landscapes with random
neighborhoods for and different values of . The information characteristics are
averaged over adaptive walks of no more than steps.

Additional information about the structure of the N landscapes can be derived from
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the plots depicted in Figure 6. The �gure presents the information functions and
for different values of . It is shown that the random walks on the landscapes are irregular
(Section 3.3), and the degree of irregularity increases with the number of interactions
within the genotypes. The degree of irregularity of a landscape (Section 3.3) is an estimate
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Figure 6: The information functions (a) and (b) of N landscapes with random
neighborhoods for and different values of .

of the complexity of the walks among the points on the landscape. If a landscape is regular
(Equation 18), the structure determined by the walks on the landscape is “homogeneous”,
and the information functions and will be constant functions when is less than
the information stability. Figure 6 demonstrates that the complexity of the walks on the N
landscapes increases as the interactions between the genes within the genotypes increase.

Another conclusion that can be derived from Figure 6 is that the diversity of local
optima classi�ed by their altitude increases as the parameter increases. Note that the
functions and are steeper for lower values of . The steepest information
functions characterize the smoothest landscape, while the less steep functions correspond
to the more rugged landscapes. However, for , the steepness of and
decreases when the functions become close to for large . Consequently, there is a small
number of neighboring points with a signi�cantly different �tness values. This could be
one of the reasons why the N landscapes are dif�cult for evolutionary search for .

4.3 The Complexity Catastrophe Causes an Information Collapse

We study how the information structure of the N landscapes changes when we vary the
parameter . Kauffman (1989) also investigated this and demonstrated that the �tness
values of the attainable optima decrease toward when and increase. He called this
phenomenon complexity catastrophe. Here, we study this in terms of the information analysis
and, in particular, when is varied for a �xed value of and when and increase with
being proportional to .

The information characteristics of N landscapes for and several values of are
depicted in Figure 7. The �gure shows the information content, the partial information
content, the density-basin information for , and the information stability plotted as
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functions of the parameter . Each plot is evaluated on random walks of steps. We
found it unnecessary to plot the functions and since their behavior differed little
from that shown in Section 4.2.
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Figure 7: The information characteristics of N landscapes with random neighborhoods
for and different values of : (a) , (b) , (c) , and (d) information
stability.

The plots in Figure 7 suggest that the N landscapes become smoother as increases.
It can be seen that the information content and the partial information content decrease,
while the density-basin information quickly increases to constant levels for small values
of . It can be seen that the levels attained by the information content, the partial
information content, and the density-basin information are approximately , , and

, respectively. It follows that, for high values of , it is equally likely that, during
the random walk, the �tness will increase or decrease. The information stability decays
in a similar manner to that of the other information characteristics. The plot in Figure 7
implies that as increases, the information stability decreases toward rapidly at �rst and
more gradually for approximately greater than . These results imply that the sizes of
the basins of attraction of the optima increase with .
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The decays observed for the information characteristics when is equal to are
different. We compare the information content and the information stability of several N
landscapes with random neighborhoods. The results are shown in Figure 8. The left hand
side of the �gure shows the plots of (a) the information content and (b) the information
stability obtained for and . The right hand side of Figure 8 shows
how the difference (discrepancy) between the plots of the information characteristics ((a)
information content and (b) information stability) is related to the parameter .
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Figure 8: The information decay of N landscapes with random neighborhoods: (a) infor-
mation content and (b) information stability. The left �gures show information character-
istics, and the right �gures show discrepancy between the information characteristics for

and .

The plots in Figure 8(a) suggest that as the number of genes increases, the infor-
mation content decreases, and the degree to which the information decays depends on the
constancy of the ratio of to . When the parameter is �xed, the information content
decreases rapidly. When the parameter increases such that it is proportional to , the
information content decreases linearly. Consequently, by increasing the parameter , we
do not drastically change the structure of these landscapes.

In contrast to the behavior of the information content with increasing , the infor-
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mation stability decreases in a different manner. Once again, the degree of the information
decay depends on , however, the relation between and the information stability is dif-
ferent from that exhibited by the information content. The plots in Figure 8(b) show that
when is proportional to , the information stability decreases toward faster than the
plot corresponding to a �xed value of . We suppose that for a very large value of , a
critical level of the interactions among the genes in the genotypes exists for which the
information stability increases as increases towards and decreases as increases from

to .

5 Discussion

The previous sections have shown how the described �tness landscape analysis is a useful
tool for studying the structure of landscapes. The technique is simple and has the following
advantages:

1. It allows a measure of the diversity of the local optima. Calculating the information
content of a landscape, we obtain information about the landscape pro�le (the possible
shapes of landscape optima). Applying the analysis to the N model, we showed that the
N landscapes are multi-peaked without plateau forms. The nature of the landscape
structure is only slightly changed when we vary the parameters of the model.

2. The analysis can assist in a study of the landscape modality. We introduced the partial
information content that is an estimate of the modality when applied to a time series
obtained by an adaptive walk. In addition, we suggested the density-basin information
that characterizes the diversity of �at and smooth sections of the explored time series.
The similarity between the plots of the information characteristics, depicted in the
previous section, again implied that the nature of the N landscapestructure is relatively
invariant to changes in the parameters of the model.

3. Filtering the information content and the partial information content, we constructed
information functions and that revealed how the landscape structure
changes with the scale of observation. This allowed a measurement of the degree
of regularity of walks on a landscape, and, thus, we showed that by increasing the
parameter , we increase the irregularity of walks on N landscapes.

4. By measuring the regularity of walks on maximally multimodal landscapes, we can
determine whether or not they are easy for evolutionary search (the assertion in Sec-
tion 3.4). We suspect that by studying the degree of regularity of a maximally mul-
timodal landscape, the landscape might be transformed so that it becomes easier for
evolutionary search.

5. Calculating the information functions, we obtain the information stability of the land-
scape that is an estimate of the largest �tness difference encountered in neighboring
points. The above experiments showed that for higher values of , the information
stability of N landscapes grows non-linearly. This is caused by the dependence on the
distribution of the �tness values. Furthermore, by studying the complexity catastrophe
phenomenon, we demonstrated that for large values of , a critical level of interactions
between the genes exists beyond which the information stability decreases towards
and, hence, tends to an information collapse.
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Thus far we demonstrated how the information analysis can be applied to landscapes,
particularly N landscapes, in order to characterize their structure. In our investigation,
the sequences of �tness values were obtained by walks which were performed by a bit�ip
operator. We gave an example of how to apply and to analyze the results of such an
investigation. With an understanding of the analysis, other types of landscapes can be
studied. Essentially, one only needs to change the algorithm for generating the time series.
Note that the evolutionary operators de�ne the neighborhood in the landscapes, and, for
instance, to perform a walk on a crossover landscape, we should apply the corresponding
crossover operator in order to move from one landscape point to another.

The approach presented is general and directly applicable to different variants of
evolutionary algorithms such as messy genetic algorithms (Goldberg et al., 1989) and
genetic programming (Koza, 1992). For instance, the information analysis was employed by
Nikolaev and Slavov (1998) in studying how the novel context-preserving mutation operator
for genetic program trees is better than other types. The generality and the advantages
of the analysis are also demonstrated in the following study of the onepoint mutation and
uniform crossover landscapes associated with a two-bit multiplier evolved by an evolutionary
algorithm. This is an example of digital circuit evolution (Miller et al., 1997; Miller and
Thomson, 1998) and has been recently studied in the �eld of evolvable hardware (Sipper
et al., 1997).

Digital circuit evolution refers to the design of electronic circuitry in which con�gura-
tions of logic gates for some pre-speci�ed computational task can emerge in a population of
gate arrays using arti�cial evolution. The correlation characteristics of the �tness landscapes
associated with the digital circuit evolution on an idealized model of a �eld-programmable
gate array were studied by Vassilev et al. (1999). The dif�culty in studying the structure
of these landscapes stems from the genotype representation that allows us to evolve the
functionality and connectivity of the gate array. The genotypes are constructed over three
con�guration spaces which are de�ned over two completely different alphabets. The spaces
represent all the possible con�gurations of functionality and the internal and output con-
nectivity of the encoded gate array. This gives rise to highly non-isotropic landscapes which
makes their investigation much more convoluted.

In Vassilev et al. (1999), a model for studying the structure of circuit evolution
landscapes was proposed (Appendix B). The model is based on the idea that a landscape
might be decomposed to subspaces that are suitable for a statistical investigation (Hordijk,
1997). Here we employ the model in order to study the information characteristics of
the subspaces of onepoint mutation and uniform crossover landscapes de�ned on a two-bit
multiplier that is evolved by an evolutionary algorithm (Appendix B). Since there are three
con�guration spaces, we estimate the information characteristics of six time series obtained
by random walks of length on the corresponding onepoint mutation and uniform
crossover subspaces.

A random walk on a mutation landscape is implemented as follows: start from a genotype (in our case, it is
the evolved two-bit multiplier), generate all neighbors of the current point by mutation and evaluate their �tness
values, choose randomly one neighbor and record its �tness, generate all neighbors of the new point, which
becomes “current”, and so on (Weinberger, 1990). A random walk on a crossover landscape is implemented by the
algorithm given in Wagner and Stadler (1998) (see also Stadler and Wagner (1997)). In short, it can be described
as follows: start with a pair of genotypes, generate a set of offsprings by applying the crossover operator and
evaluate their �tness values, from those randomly choose one (record its �tness) and mate it with a randomly
chosen genotype, etc. until the termination conditions are satis�ed. Here, we perform the walks with respect to
the investigated subspace (Appendix B).
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Figure 9: The information functions of (1) functionality, (2) internal connectivity,
and (3) output connectivity subspaces of the two-bit multiplier landscape obtained by (a)
onepoint mutation and (b) uniform crossover operators.

Figure 9(a) represents the information functions of the (1) functionality, (2) inter-
nal connectivity, and (3) output connectivity subspaces of the onepoint mutation landscape.
The subspaces are characterized with �at landscape areas since the information content

of each subspace is signi�cantly higher than . The plots of also imply
subspaces with signi�cantly different pro�les. For instance, the information functions of
the functionality and internal connectivity subspaces decrease as increases, while of
the output connectivity subspace increases as increases from to approximately .
Consequently, the plateau forms in the functionality and internal connectivity subspaces
prevail in the corresponding ensembles of information objects. This is not so for the output
connectivity subspace.

Figure 9(b) represents the information functions of the (1) functionality, (2) inter-
nal connectivity, and (3) output connectivity subspaces of the uniform crossover landscape.
Again, the information content of each subspace is signi�cantly higher than ,
which implies the existence of plateaus on the landscape. The depicted information func-
tions reveal that these subspaces have similar pro�les. The subspaces are characterized
with multi-peak con�gurations which prevail over the �at landscape areas. Consequently,
the uniform crossover landscape has higher modality than the onepoint mutation one, which
implies a landscape with higher ruggedness. It agrees with Vassilev et al. (1999) who sug-
gested that the uniform crossover operator is not the right operator for this optimization
problem.

The plots in Figure 9 suggest a certain similarity between the mutation and crossover
subspaces. Since the plots of represent step functions, we surmise that the landscapes
consist of a small number of altitude levels which, together with the �at landscape areas,
imply vast and sharply differentiated landscape plateaus. It suggests that an evolutionary
strategy with simple elitism and a small population might be much more effective to search
in these landscapes which agrees with the �ndings in Miller (1999).

54 Evolutionary Computation Volume 8, Number 1



Information Characteristics and Landscapes

6 Conclusions

Often when we investigate the structure of a �tness landscape, we measure the correlation
characteristics of the landscape, which is the easiest reliable way to assess the landscape
ruggedness. However, the correlation measures provide generalized and often insuf�cient
information about the landscape structure. Many features of the structure of a landscape
in�uence the ability of a population to search, and it is dif�cult from studying only the
ruggedness of the landscape to determine the likelihood of the evolutionary search to
succeed.

In this paper, a concept for studying the structure of �tness landscapes was proposed.
We chose a standard analysis of rugged systems and applied it to �tness landscapes, ignoring
certain non-essential information about the structure of the landscapes. We introduced a
technique for analyzing the pro�le of a landscape that is based on three basic information
characteristics: information content, partial information content, and information stabil-
ity. The �rst two information characteristics were de�ned as estimates of the amount of
information of the landscape, while the information stability was de�ned as a result of �l-
tering out the estimated information content. To measure the amount of information in a
landscape, represented as an ensemble of objects, does not necessarily imply measuring the
ruggedness of the landscape. At this point, the information analysis differs signi�cantly from
many others statistical approaches. For instance, consider an estimate of the correlation
characteristics of a landscape. The lower the correlations, the more rugged the landscape.
The information analysis is different. The analysis gives us a notion of what is the interplay
between the smooth, rugged, and �at landscape areas.

The information analysis was applied to the N model of landscapes. The aim was
to investigate what the analysis says about the structure of landscapes with well known
characteristics. The results of the study indicated that the technique was reliable and
capable of providing useful information about the landscape structure. The usefulness of the
analysis has been also demonstrated by the study of the two-bit multiplier landscapes, which
revealed how the analysis could be helpful for a better understanding of the evolutionary
search on these landscapes. To summarize, we demonstrated that the proposed statistical
analysis technique is an appropriate tool for exploring the structure of �tness landscapes,
and, further, it gives information that is not easily attainable using the other statistical
analyses.
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A Fitness Landscapes – Basic De�nitions

The appendix provides some de�nitions related to the theory of �tness landscapes, most of
them given by Jones (1995).

Consider a landscape de�ned over a graph where and are the sets
of vertices and edges, respectively, and is the evolutionary operator that speci�es the
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neighborhood in the graph. Also, let be a �tness function that assigns each vertex from
with a real number from a certain interval.

DEFINITION A.1 (Neighborhood and Neighbor): Given an evolutionary operator , the
neighborhood of is the set

(27)

If we say that is a neighbor of .

DEFINITION A.2 (Neighborhood and Neighbor 2): Let be a subset of . For an evolutionary
operator , the neighborhood of is

and (28)

The vertex is a neighbor of if .

DEFINITION A.3 (Peak): A vertex is a peak iff, for each ,

(29)

DEFINITION A.4 (Global Maximum (Optimum)): A global maximum of a landscape is a
vertex such that

(30)
for all .

DEFINITION A.5 (Local Maximum (Optimum)): A local maximum of a landscape is a vertex
such that

(31)
for all .

DEFINITION A.6 (Plateau): A plateau is a set of two or more vertices so that for each
a subset exists where and for every ,

.

DEFINITION A.7 (Basin of Attraction): A basin of attraction of a vertex is the set of vertices

with and
(or if minimising) for each (32)

We consider that the number of vertices in the basin of attraction of a vertex, ,
de�nes the size of the basin. Thus, isolated optima are the peaks with smallest basins of
attraction. We also say that the size of a basin of attraction speci�es the degree of isolation of a
particular optimum. The higher the degree of isolation, the smaller the basin of attraction.

B The Two-Bit Multiplier Landscapes

In this appendix, we present the model of the digital circuit evolution landscapes and the
two-bit multiplier whose �tness landscapes are studied in the paper (further details can be
found in Vassilev et al. (1999)).
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B.1 Evolving Digital Circuits – Landscapes

We consider a genotype representation of an idealized �eld-programmable gate array based
on that proposed in Miller and Thomson (1998). The structure of the genotype is dependent
on the parameters of the gate array. These are the number of inputs, the number of rows and
columns, the number of allowed logic functions, the radius range of internal connectivity,
which is also known as levels-back parameter, and, of course, the functionality of the evolved
circuit or the �tness function that also determines the number of outputs.

The genotype is a composition of three different parts which are responsible for:
�rst, the gates functionality, second, the array internal connectivity, and third, the array
outputs. For convenience, we adopt the term chromosome to mean a genotype part. Thus,
each genotype becomes a composition of three chromosomes with different length that are
de�ned over two completely different alphabets. The “gate functionality” chromosomes
are strings over alphabet with a length equal to the number of gates. The “internal
connectivity” and “array outputs” chromosomes are de�ned over alphabet , and they
are strings with a length equal to the number of gates and the number of array outputs,
respectively.

The alphabet is a set of integers that represents the allowed logic functions. There-
fore, the alphabet size is the number of logic functions used in the circuit design. The
alphabet is related to the size of the neighborhood of the cells and array outputs that is
dependent upon the levels-back parameter. Again, the alphabet is a set of integers, how-
ever, they are reference numbers of the elements of a neighborhood. Hence, the size of is

if
otherwise where is the number of rows, is the number of columns,

is the number of inputs of the gate array, and is the levels-back.

Since each genotype consists of three chromosomes, we assume that the original land-
scape for a given evolutionary operator is a product of three con�guration spaces de�ned
over alphabets and . Consider the hypergraphs , , and that represent the
con�guration spaces of the chromosomes responsible for functionality, connectivity, and
output connections, respectively. Let denote an evolutionary operator. The digital circuit
evolution landscapes are

(33)

The graphs , , and are obtained by assigning each vertex from , , and
, respectively, with a �tness value. The �tness values are provided by �tness functions

, , and , which are de�ned as follows

(1)

(2)

(3) (34)

The function is de�ned over the genotype space (the operator “ ” is considered to merge
the strings in a special way so that the genotype structure is obtained), and it evaluates the
percentage of correctness of the represented circuit. Thus, for each family of landscapes
we have a group of �tness functions, and each �tness function estimates only a part of the
genotype. Hence, its index is determined by the constant string which is the remainder
of the genotype.
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B.2 The Two-Bit Multiplier

The two-bit multiplier is evolved on a array of logic cells. The levels-back parameter
is , and the number of allowed two-input logic functions is (Vassilev et al., 1999). The
genotype is shown in Table 4, and the corresponding phenotype is depicted in Figure 10.
The most signi�cant bits are inputs and , and output .

Table 4: The genotype of the two-bit multiplier evolved on a gate array. The column
“Cell” gives the label of the cell whose genetic information is listed on the right side at
column “Allele(Gene)”. The column “Allele(Gene)” represents the genotype where the
label of the gene is given in parentheses.

Cell Allele(Gene)

Outputs

Input 1

Input 2

Input 3

Input 4

Output 1

Output 2

Output 4

Output 3

Figure 10: The schematic of the two-bit multiplier, obtained by arti�cial evolution.
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