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Abstract. The traditional paradigm for digital filter design is based on the
concept of a linear difference equation with the output response being a
weighted sum of signal samples with usually floating point coeff icients.
Unfortunately such a model is necessarily expensive in terms of hardware as it
requires many large bit additions and multiplications. In this paper it is shown
how it is possible to evolve a small rectangular array of logic gates to perform
low pass FIR filtering. The circuit is evolved by assessing its response to
digitised pure sine waves. The evolved circuit is demonstrated to possess
nearly linear properties, which means that it is capable of filtering composite
signals which it has never seen before.

1 Introduction

The difference equation is a fundamental concept employed in the construction and
analysis of digital filters [8]. Formally this is represented in the following way. The
output of the filter at time n, y(n), may be a function of N samples of the signal x(n-i)
at earlier times, and may also, if feedback is present, involve earlier outputs y(n-i)
given by the following equation:
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where the coeff icients ai and bi are real valued floating-point numbers. The essential
problem of filter design is the choice of { ai} , { bi} , N, and M, so that the filter has the
desired behaviour (i.e. frequency response). In practice the coeff icients { ai} , { bi} are
of finite precision. The practical requirements of implementing such a system in
hardware consists of providing a number of shift registers, multipliers, and adders.
Large bit multipliers are very costly in hardware terms. Three of the most important
factors in the design of digital filters are quality of signal response, size (cost) of
hardware implementation, and speed of operation. There are many traditional
approaches which have been developed to address these issues [8]. In particular one
popular method for reducing the complexity of implementation is to restrict the filter
coeff icients to integer coeff icients, see [4] and references therein. Recently,
researchers have started to explore the application of evolutionary algorithms to filter
design [1] [2] [3] [5] [6] [15] [17] [18] [19]. The essential idea employed by most of
these authors is to use an evolutionary algorithm to optimise the filter coeff icients.



This may be in combination with finite wordlength analysis [1] [6] for IIR filter
design, or it may be in an adaptive context [5][18]. Other workers have employed
evolutionary algorithms to optimise coeff icients together with add and shift operations
in so-called multiplier-less designs [15] [17] [19]. In [3] a genetic algorithm was used
to design an eff icient non-linear filter for signal noise reduction by finding a suitable
positive boolean function (PBF). The PBF could be represented as a boolean sum of
products, involving AND gates and OR gates.

The main idea of the work presented in this paper is to explore for the first time at
a logic gate level whether it is possible to evolve networks of logic gates to carry out
filtering tasks. This is an interesting thing to do for two main reasons. Firstly to
explore the concept of digital filtering in a space of possibiliti es which is considerably
larger and richer than the traditional human, top-down, difference equation method.
Secondly to see how effective a microscopic number of logic gates might be in a
filtering task.  The pioneering concept of gate-level evolution of digital functions was
developed in [7]. In [13] the authors generalised the concept of gate-level evolution to
the so-called functional level, and they showed how it was possible to carry out
adaptive equalisation on a communications channel with superior bit error rates to the
conventional least mean squares method. Their method was not rigidly fixed to be
linear in operation, it could be carried out very quickly, and relatively inexpensively
in hardware.  These authors believed that it would not be possible to achieve real-
world performance using a gate-level approach.  One of the objectives of the work
presented here is to show that that the possibiliti es afforded by gate-level evolution
have been left largely unexplored, and that there remains much fundamental work to
be done at this level. An additional motivation for attempting this work is the
enormous potential for new knowledge discovery afforded by the simple nature of
logic functions. In other words, can new principles be extracted from gate-level
evolution which can inspire and contribute to new methodological paradigms? There
are of course enormous questions that need to be addressed if such a filtering method
is to become practicable. Foremost among these would be the question of linearity. If
a gate array is to be trained to carry out a filtering task then can this be done in such a
way that composite signals, which can be represented as weighted sums of sine waves,
will also be filtered? This would imply that the circuit at least be weakly linear. The
findings presented in this paper are encouraging in this regard, as in section 4 it is
shown that the evolved gate arrays do appear to be quasi-linear.

The actual method employed here to evolve a gate array (section 2) is developed
from earlier work in [9][10][11]12] and has some similarity to a method called
Parallel Distributed Genetic Programming (PDGP) [14]. In earlier work [10][11][12],
the objective was to synthesise an entire truth table. This becomes increasingly time
consuming and diff icult as the number of inputs grow. It is obvious that attempting to
evolve truth tables of larger sizes will not be feasible. It was argued in [9] that the real
applications for gate-array evolution probably lie in real number mapping problems,
where the digitised real numbers are presented to a circuit and a digitised real number
output is desired. In such a scenario the number of input conditions is determined by
the problem and is not necessarily an exponential function of the number of inputs.
Such a scenario is ideally furnished by the digital filtering task. In this paper only a
simple low pass FIR filter is considered. The details of this are explained in section 3.
In section 4 the evolved filtering characteristics of the gate array are examined,



including some results which show the quasi-linear behaviour. These are discussed in
section 5, and conclusions are given in section 6.

2 Gate-level evolution of digital circuits

The chromosome representation used is best explained with a simple example.  In Fig.
1 is shown a small gate array consisting of four logic cells. The logic cells in this case
have functions XOR, AND, or MUX (multiplexer). The gate array implements the
one-bit adder (with carry-in). The circuit in question actually arose in an earlier
experiment reported elsewhere [12] and is quite novel in its own right. A, B, and Cin
denote the primary inputs. Cout and Sum are the output bits of the adder. Each cell i s
assumed to possess three input connections. If the cell function does not require inputs
then the corresponding genes are ignored. For example the upper right cell (output 5)
below has input connections 3, 2, 1. Thus,  the first input is connected to the output of
the cell with output label 3 (upper left), the second input is connected to the primary
input Cin, and the third input is connected to primary input B. The function of each
cell i s expressed as the fourth gene associated with each cell . The primary outputs of
the gate array are also expressed as connections. For example Cout is connected to the
output of the cell with output label 6. The gate array is envisaged as being divided into
vertical columns of cells and the representation is so constrained that columns of cells
may only have their inputs connected to connection points on their left. This ensures
the feed-forward nature of the circuit and removes any time dependent behaviour.
Actually the connectivity is further constrained by the presence of a parameter
denoted l, which dictates the number of columns on the left (including the primary
inputs at column zero) to which the inputs of cells in column l may be connected. The
purpose of this is to constrain the fan-out of signals and thereby improve the ease with
which the circuit may be routed when it is physically implemented.

The chromosome representing the gate array shown in Fig. 1 is given below:

0 1 0  10      0 0 2  6      3 2 1  10      0 2 3   16         6  5

Fig.  1.  One-bit adder (with carry-in) implemented as a  feed-forward gate array



where the emboldened integers are the cell functions. The allowed cell functions can
be chosen to be any subset of those shown in Table 1, where ab implies a AND b, a
indicates NOT a, ̂  represents the exclusive-OR operation and | the OR operation.

Functions 16-19 describe various multiplexers and 20 describes a Reed-Muller ULM.
The last five functions prove to be very effective components in assisting the
evolutionary process, this is probably due to their flexibilit y in that they are all
universal logic modules and allow the synthesis of any logic function of one or two
variables.  The genetic algorithm employed random mutation which respected the
feed-forward nature of the circuits and also the different alphabets associated with
connections and functions. Uniform crossover was employed with a 50% genetic
exchange. Eliti sm was always used as it is markedly beneficial [11]. A probabili stic
tournament selection method (size 2) was used in which the winner of the tournament
was selected with a certain probabilit y (between 0.5 and 1.0).

3 Evolving a filter response with a gate array

The incoming analogue signals which are to be processed by the gate array are
sampled at frequency f, with sampling period p. Thus the number of samples used, s,
is given by s=fp. The samples are digitised and represented by a wordlength of r bits.
In a FIR filter of order n one therefore must collect nr bits at each sampling time.
These nr bits for the s samples are collected and represent the input conditions to the
gate array. For each nr input bits the gate array must produce r output bits. In this way
a set of input-output conditions are defined. When s samples have been collected the
discrete fast fourier transform (DFFT) is taken. A program, which was freely available
in [8] was used to do this. In this way the frequency characteristics of the evolving
gate array can be assessed for each input signal. The input signals chosen were pure
sine waves with zero phase. They had frequencies which were integral multiples of the
fundamental f1 (1/p) up to the Nyquist frequency, fn (half sampling frequency) minus
1. The sine waves were translated by the addition of a d.c. component so that they
assumed only positive values, this removed the need for two’s complement number
representation. One can envisage this more clearly by noting that the fundamental
corresponds to a single exact sine cycle fitting into the sampling window. The entire
arrangement is shown in Fig. 2. In this figure an input sine wave is shown on the left
which is digitised to binary numbers with wordlength 4 and filter order 2. An entire
history of samples are collected for each sine wave. These are the input conditions
presented to the gate array. On the right of the gate array is shown the outputs of
wordlength equal to  4 bits. The desired filter response is characterised by a low pass
cutoff point fp. To evaluate the fitness of a chromosome each digitised sine wave with

Table 1. Allowed gate functions

0  1 2 3 4 5   6    7    8   9   10    11   12   13   14  15     16     17     18      19       20
0  1 a b a  b  ab  ab  ab  ab  â b  â b  a|b  a|b   a|b  a|b  ac|bc  ac|bc  ac|bc  ac|bc  â (bc)



frequency f is presented to the gate array and the DFFT of the output response is
calculated.

Fig.  2.  The training scenario for evolving a gate array with filtering properties

The power in the frequency domain W(f), defined as the modulus of the output
response in the complex frequency domain, is normalised by dividing by the
maximum power associated with the DFFT of a pure sine wave. The d.c. component
of the output is ignored. The fitness xi of the gate array for a sine wave of frequency fi

is calculated in the following way:

                  }1,:),(max{)( 1 −≤≤≠∀−= njjii fffijjfWfWx , pff ≤             (2)

}1:),(max{0.1 1 −≤≤∀−= njji fffjfWx , pff >

The total fitness x associated with a given chromosome is then given by the sum of the
components xi for all frequencies up to fn-1. Thus if the maximum power for a sine
wave with frequency greater than the cutoff point is zero, the fitness contribution will
be 1, if the maximum power is not zero then the fitness component will be lower. This
definition of fitness means that one is trying to suppress sine waves with frequencies
above the cutoff point, and trying to enhance only the pure frequencies below the
cutoff point. Thus the degree to which the actual shape of the outgoing sine wave
conforms to a pure sine wave is being rewarded for frequencies below the cutoff point.
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4 Results

The experimental parameters for this paper are given below, the nominal sampling
period p was chosen to be 1 for convenience. Thus the sampling frequency f equals the
number of samples s.

• number of samples s=128, wordlength r =8, filter order = 4,
• normalised passband cutoff = 0.08 (10.24 un-normalised)
• population_size is 10, breeding rate   is 100%, mutation probabilit y  is

0.005
• num_generations is 5000, number of runs is  2, eliti sm,
• tournament selection (size 2) acceptance probabilit y is 0.7
• number of rows in gate array is 9, number of columns in gate array  is  9
• connectivity parameter l = 9. The only gate type allowed was the  multiplexer

(type 16).

The results shown in this paper are for the best of two runs of the genetic algorithm
under the above conditions. Investigation of the most suitable parameter settings lies
outside the scope of this paper. A small population size was chosen purely for speed
of execution. The frequency response of the evolved filter is shown in Fig. 3.

4.1 Filter response to pure sine signals in the passband
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Fig. 3. Frequency response of the evolved filter
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Fig. 4. Incident signal f1 , output response and frequency response



4.2 Filter response to pure sine signals in the stopband
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Fig. 5. Incident signal f5 , output response and frequency response
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Fig. 6. Incident signal  f15 , output response and frequency response
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4.3 Filter response to signals which are a sum of two sine waves
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Fig. 7. Incident signal f20 , output response and frequency response
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Fig. 8. Incident signal 0.5(f1 + f2 ), output response and corresponding frequency response
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Fig. 10. Incident signal 0.5(f4 + f40 ), output response and corresponding frequency response
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Fig.  9. Incident signal 0.5(f3 + f20 ), output response and corresponding frequency response



4.4 Filter response to signals which are a sum of three sine waves
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Fig.  11. Incident signal 0.33(f1 + f2 + f20 ), output response and corresponding frequency
response
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Fig.  12. Incident signal 0.33(f1 + f2 + f5 ), output response and corresponding frequency response
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5 Discussion of results

5.1 Filter characteristics

In Fig. 3, the filter response  is shown, there is still a noticeable tail which extends past the
cutoff f requency of 10 f1  from 11f1 to about 20 f1. However it should be noted that the
gate array is tiny and the work is still at a preliminary phase. The quality of the
frequency response in meeting the specification is encouraging. In section 4.1 are
shown the output responses of the filter to incident pure sine signals and also the
output response in the frequency domain. Sine waves in the passband are being passed
with littl e attenuation, however it can be seen especially in the case of the lowest
frequency sine wave (Fig. 4) that there is the largest distortion of the signal. In Figures
6 and 7 the incident sine signals have frequencies in the stopband so they should be
highly attenuated. One can see that there is a marked drop in signal amplitude as the
signal is converging to a d.c. component. As the frequency of the incident signals are
increased the off d.c. spikes become more and more sparse. Actually there is
something a littl e puzzling here as the fitness function is designed to suppress
frequencies in the stopband with uniform probabilit y so that the attenuation of those
frequencies should show no frequency dependent behaviour. The reason for this is not
currently understood but it may be due to a frequency dependent distortion in the
incident sine signals. In Figs. 8-12 are shown the output responses of the filter to
various sums of sine waves. All these signals have never been seen by the filter before.
In Fig. 8 it can be seen that the filter is exaggerating the changes in amplitude of the
incident signal. The frequency response shows the dominant frequencies to be the
same as the incident. The filter is displaying a nearly or quasi-linear response. In Figs.
9 and 10 the higher frequency lies in the stopband thus for ideal filter behaviour one
would expect the higher frequency component to be highly attenuated. The evolved
filter appears to be doing this as it is responding to the slower changes in the signal.
This is confirmed by the frequency responses. In Figs. 10 and 11 more complex
signals were presented to the filter. These were sums of three sine waves. In the first
case (Fig. 11) two components were in the passband. Again the filter is still t rying to
follow the slower changes and the frequency response is dominated by the lower
frequencies. In Fig. 12 all the frequencies lay in the passband, again it is seen that the
filter is trying to follow all the changes in the incident signal. However once again it is
exaggerating the changes.

5.2 Hardware requirements and speed of evolved filter compared with
conventional

When the evolved filter circuit was analysed it was found to require 29 multiplexers
(equivalent to 87 two-input gates). In addition the filter would produce the filtered
response very quickly as one only has to wait for the signals to propagate through the
gate-array. A conventional filter of order 4 and wordlength 8 would require at least an
eight-bit adder and multiplier as well as registers to store the coeff icients. A
conventional cellular adder and multiplier of this size would require n2 AND gates and
n(n-1) full adders (where n=8). Thus it would require 344 two-input gates. The output
would be delayed by a number of clock cycles to accumulate the response (see
equation 1).



6 Conclusions

In this paper it has been shown that it is possible to evolve filtering characteristics
with a gate-array containing very few components. The gate-array filter is produced
without many of the conventional assumptions in that it does not employ coeff icients
or any explicit arithmetic operations. The evolved filter has a quasi-linear response
that has emerged naturally. There is currently no mathematical framework for
understanding how to design filters at this level. It is felt that the results presented here
may encourage some thinking about a mathematical underpinning of this. There is still
an enormous amount of further investigation to be undertaken. The work raises almost
as many questions as it answers. Why is the evolved filter quasi-linear? Can one
evolve it in such a way as to enhance its linearity? Would this require greater gate
resources? What would the filtering action of cascades of these smaller filters be like?
How would the filter response to changes in phase of the incident sine waves? It is felt
that this work once gain demonstrates the enormous capacity of a few gates to display
complex behaviours, a fact which has become evident in much work in the field of
evolvable hardware [16].
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