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Abstract. The traditional paradigm for digital filter design is based on the
concept of a linea difference ejuation with the output resporse being a
weighted sum of signal samples with usualy floating point coefficients.
Unfortunately such amodel is necessarily expensive in terms of hardware asiit
requires many large bit additions and multi pli caions. In this paper it is siown
how it is passble to evolve asmall redangular array of logic gates to perform
low pass FIR filtering. The drcuit is evolved by assesdsng its resporse to
digitised pue sine waves. The evolved circuit is demonstrated to posess
nealy linea properties, which means that it is cgpable of filtering composite
signals which it has never seen before.

1 Introduction

The difference euation is a fundamental concept employed in the wnstruction and
analysis of digital filters [8]. Formally this is represented in the following way. The
output of thefilter at time n, y(n), may be afunction of N samples of the signal x(n-i)
at ealier times, and may also, if feedbad is present, involve ealier outputs y(n-i)
given by the foll owing equation:
N-1 M
y(m =Y ax(n-i)+$ byn-i M
1= 1=

where the mefficients & and b; are red valued floating-point numbers. The essential
problem of filter designisthe choice of {a}, {b}, N, and M, so that the filter has the
desired behaviour (i.e. frequency response). In pradice the wefficients {a}, {b} are
of finite predsion. The pradicd requirements of implementing such a system in
hardware @nsists of providing a number of shift registers, multipliers, and adders.
Large bhit multipliers are very costly in hardware terms. Three of the most important
fadors in the design of digital filters are quality of signal response, size (cost) of
hardware implementation, and speed of operation. There ae many traditional
approaches which have been developed to addressthese issues [8]. In particular one
popular method for reducing the complexity of implementation is to restrict the filter
coefficients to integer coefficients, see [4] and references therein. Receantly,
reseachers have started to explore the gplication of evolutionary agorithms to filter
design[1] [2] [3] [5] [6] [15] [17] [18] [19]. The esentid idea enployed by most of
these aithors is to use an evolutionary agorithm to ogtimise the filter coefficients.



This may be in combination with finite wordlength analysis [1] [6] for IR filter
design, or it may be in an adaptive context [5][18]. Other workers have employed
evolutionary agorithms to optimise efficients together with add and shift operations
in so-cdled multiplier-lessdesigns [15] [17] [19]. In [3] a genetic dgorithm was used
to design an efficient non-linea filter for signal noise reduction by finding a suitable
pasitive bodean function (PBF). The PBF could be represented as a bodean sum of
products, involving AND gates and OR gates.

The main ideaof the work presented in this paper is to explore for the first time &
alogic gate level whether it is possble to evolve networks of logic gates to carry out
filtering tasks. This is an interesting thing to do for two main reasons. Firstly to
explore the concept of digital filtering in a spaceof posgbiliti es which is considerably
larger and richer than the traditional human, top-down, difference equation method.
Semndly to see how effedive a microscopic number of logic gates might be in a
filtering task. The pioneaing concept of gate-level evolution of digital functions was
developed in [7]. In[13] the authors generalised the concept of gate-level evolution to
the so-cdled functional level, and they showed how it was possble to cary out
adaptive equalisation on a communicaions channel with superior bit error rates to the
conventional least mean squares method. Their method was not rigidly fixed to be
linea in operation, it could be caried out very quickly, and relatively inexpensively
in hardware. These aithors believed that it would not be possble to achieve red-
world performance using a gate-level approach. One of the objedives of the work
presented here is to show that that the posgbhiliti es afforded by gate-level evolution
have been |eft largely unexplored, and that there remains much fundamental work to
be done a this level. An additional motivation for attempting this work is the
enormous potential for new knowledge discovery afforded by the simple nature of
logic functions. In other words, can new principles be etraded from gate-level
evolution which can inspire and contribute to new methoddogicd paradigms? There
are of course enormous questions that need to be addressed if such a filtering method
isto become pradicable. Foremost among these would be the question of lineaity. If
agate aray isto be trained to carry out afiltering task then can this be done in such a
way that compasite signals, which can be represented as weighted sums of sine waves,
will also be filtered? This would imply that the drcuit at least be we&ly linea. The
findings presented in this paper are encouraging in this regard, as in sedion 4 it is
shown that the evolved gate arays do appea to be quasi-linea.

The adual method employed here to evolve agate aray (sedion 2) is developed
from ealier work in [9][10][11]12] and has sme similarity to a method cdled
Parallel Distributed Genetic Programming (PDGP) [14]. In ealier work [10][11][12],
the objedive was to synthesise an entire truth table. This becomes increasingly time
consuming and difficult as the number of inputs grow. It is obvious that attempting to
evolve truth tables of larger sizeswill not be feasible. It was argued in [9] that the red
applications for gate-array evolution probably lie in red number mapping problems,
where the digiti sed red numbers are presented to a drcuit and a digitised red number
output is desired. In such a scenario the number of input conditions is determined by
the problem and is not necessarily an exponential function of the number of inputs.
Such a scenario is idedly furnished by the digital filtering task. In this paper only a
simple low passFIR filter is considered. The detail s of this are explained in sedion 3.
In sedion 4 the evolved filtering charaderistics of the gate aray are examined,



including some results which show the quasi-linea behaviour. These ae discused in
sedion 5, and conclusions are given in sedion 6.

2 Gate-level evolution of digital circuits

The dchromosome representation used is best explained with a ssimple example. In Fig.
1is gown asmall gate aray consisting of four logic cdls. The logic cdlsin this case
have functions XOR, AND, or MUX (multiplexer). The gate aray implements the
one-bit adder (with carry-in). The drcuit in question adualy arose in an ealier
experiment reported elsewhere [12] and is quite novel in its own right. A, B, and Cin
denote the primary inputs. Cout and Sum are the output bits of the adder. Each cdl is
asumed to pasessthreeinput connedions. If the cdl function does not require inputs
then the corresponding genes are ignored. For example the upper right cdl (output 5)
below has input connedions 3, 2, 1. Thus, the first input is conneded to the output of
the cdl with output label 3 (upper left), the second input is conneded to the primary
input Cin, and the third input is conneded to primary input B. The function of eadh
cdl is expres=d as the fourth gene assciated with ead cdl. The primary outputs of
the gate aray are dso expressed as connedions. For example Cout is conneded to the
output of the cdl with output label 6. The gate aray is envisaged as being divided into
verticd columns of cdls and the representation is 9 constrained that columns of cedls
may only have their inputs conneded to connedion points on their left. This ensures
the feed-forward nature of the drcuit and removes any time dependent behaviour.
Actuadly the onnedivity is further constrained by the presence of a parameter
denoted I, which dictates the number of columns on the left (including the primary
inputs at column zero) to which the inputs of cdlsin column | may be wnneded. The
purpose of thisisto constrain the fan-out of signals and thereby improve the eae with
which the drcuit may be routed when it is physicdly implemented.

A 0
< 10 2= 10
1 . 2 . Cout
o — Xor |3 | = XorR |3 6
B 1
Sum
. =1 s O 1 3
Cin 2 o . 2 I
, | AND |4 3 — MUX | g

Fig. 1. One-bit adder (with carry-in) implemented as a feed-forward gate aray

The diromosome representing the gate aray shown in Fig. 1 is given below:
01010 0026 32110 02316 65



where the enboldened integers are the cdl functions. The dlowed cdl functions can
be chosen to be ay subset of those shown in Table 1, where ab impliesa AND b, a
indicaes NOT a, " represents the exclusive-OR operation and | the OR operation.

Table 1. Allowed gate functions

012345 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 labab ab ab ab ab &b &'b ab ab ab ab aclbc aclbc adbc adbc a'(bc)

Functions 16-19 describe various multi plexers and 20 describes a Reed-Muller ULM.
The last five functions prove to be very effedive mmponents in asdsting the
evolutionary process this is probably due to their flexibility in that they are dl
universal logic modules and allow the synthesis of any logic function of one or two
variables. The genetic dgorithm employed random mutation which respeded the
feed-forward nature of the drcuits and also the different aphabets associated with
connedions and functions. Uniform crossover was employed with a 50% genetic
exchange. Elitism was always used as it is markedly beneficial [11]. A probabili stic
tournament seledion method (size 2) was used in which the winner of the tournament
was sleded with a cetain probability (between 0.5 and 1.0).

3 Evolving afilter responsewith a gate array

The incoming analogue signals which are to be procesed by the gate aray are
sampled at frequency f, with sampling period p. Thus the number of samples used, s,
is given by s=fp. The samples are digiti sed and represented by a wordlength of r hits.
In a FIR filter of order n one therefore must colled nr bits at ead sampling time.
These nr bits for the s samples are mlleded and represent the input conditions to the
gate aray. For ead nr input bits the gate aray must producer output bits. In this way
a set of input-output conditions are defined. When s samples have been colleded the
discrete fast fourier transform (DFFT) istaken. A program, which was fredy avail able
in [8] was used to dothis. In this way the frequency charaderistics of the evolving
gate aray can be asesed for ead input signal. The input signals chosen were pure
sine waves with zero phase. They had frequencies which were integral multiples of the
fundamental f; (1/p) up to the Nyquist frequency, f,, (half sampling frequency) minus
1. The sine waves were trandated by the adition of a d.c. component so that they
asumed only positive values, this removed the need for two’'s complement number
representation. One can envisage this more dealy by noting that the fundamental
corresponds to a single exad sine gycle fitting into the sampling window. The entire
arrangement is diown in Fig. 2. In this figure an input sine wave is gown on the left
which is digitised to binary numbers with wordlength 4 and filter order 2. An entire
history of samples are mlleded for eat sine wave. These ae the input conditions
presented to the gate aray. On the right of the gate aray is $own the outputs of
wordlength equal to 4 bits. The desired filter response is charaderised by alow pass
cutoff paint f,. To evaluate the fitnessof a diromosome eat digiti sed sine wave with



frequency f is presented to the gate aray and the DFFT of the output response is
cdculated.

Input signal Output sianal
- 0001 0000 0000
@ 0010 0001 0001
= 0011 0010 0010
L
= . GATE .
= ARRAY .

z

o 0011 0010 0000
0010 0001 0001
0001 0000 0010

FOURIER TRANSFORM

—» Frequency

Fig. 2. Thetraining scenario for evolving a gate aray with filtering properties

The power in the frequency domain W(f), defined as the modulus of the output
response in the @mplex frequency domain, is normalised by dividing by the
maximum power asociated with the DFFT of a pure sine wave. The d.c. component
of the output isignored. The fithessx; of the gate aray for a sine wave of frequency f;
is cdculated in the foll owing way:

X =W(f,)-maxqW(f,),0j:j#i, fi<f <f, -3, f<f, )
x =L0-maxW(f;),0j: fy<f <f, -5, f>f,

The total fitnessx associated with a given chromosome is then gven by the sum of the
components x; for al frequencies up to f,-1. Thus if the maximum power for a sine
wave with frequency greaer than the cutoff point is zero, the fitness contribution will
be 1, if the maximum power is not zero then the fitnesscomponent will be lower. This
definition of fitnessmeans that one is trying to suppress $ne waves with frequencies
above the cutoff point, and trying to enhance only the pure frequencies below the
cutoff paint. Thus the degree to which the adua shape of the outgoing sine wave
conformsto a pure sine wave is being rewarded for frequencies below the cutoff point.



4 Results

The experimental parameters for this paper are given below, the nominal sampling
period p was chosen to be 1 for convenience Thus the sampling frequency f equals the
number of sampless.

e number of samples s=128 wordlength r =8, filter order = 4,

e normalised passhand cutoff = 0.08 (10.24 un-normali sed)

e population_sizeis 10, breedingrate is100%, mutation probability is
0.005

e num_generationsis 5000 number of runsis 2, €litism,

« tournament seledion (size 2) acceptance probability is 0.7

« number of rowsin gate aray is 9, number of columnsin gate aray is 9

e connedivity parameter | = 9. The only gate type dl owed was the multi plexer
(type 16).

The results $own in this paper are for the best of two runs of the genetic dgorithm
under the éove mnditions. Investigation of the most suitable parameter settings lies
outside the scope of this paper. A small population size was chosen purely for speed
of exeaution. The frequency response of the evolved filter is snown in Fig. 3.
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Fig. 3. Frequency resporse of the evolved filter

4.1 Filter responseto pure sinesignalsin the passband
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Fig. 4. Incident signal f; , output resporse and frequency response
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Fig. 5. Incident signal f5 , output resporse and frequency response

4.2 Filter responseto puresinesignalsin the stopband
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Fig. 6. Incident signal fy5, output respornse and frequency response
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Fig. 7. Incident signal f,q , output response and frequency response

4.3 Filter responseto signalswhich are a sum of two sine waves

300 300
250 250 +
200 200 +
150 - 150 4
100 - 100 A
50 - 50 4
0 T T T T T T T T T T 0 T T T — — — T
1 13 25 37 49 61 73 85 97 109 121 1 13 25 37 49 61 73 85 97 109 121
12
1

Relative power
© o oo
ON DO

T N~ O M O OO N WM 0 Ad NN 0O M OO0
— «d - <

N D O
- N N N O 0O O F I < n n mn O

Frequency (sampling/128)

Fig. 8. Incident signal 0.5(f; + f, ), output resporse and correspondng frequency resporse
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g. 9. Incident signal 0.5(f; + f, ), output resporse and correspondng frequency response
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Fig. 10. Incident signal 0.5(f, + f40 ), output resporse and correspondng frequency resporse



4.4 Filter responseto signalswhich are a sum of three sine waves
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Fig. 11. Incident signal 0.33(f; + f, + f, ), output response and correspondng frequency

resporse
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Fig. 12. Incident signal 0.33(f; + f, + f5 ), output resporse and correspondng frequency response



5 Discussion of results

5.1 Filter characteristics

In Fig. 3, the filter resporse is $own, there is dill a naticedle tail which extends past the
cutoff frequency of 10 f; from 11f; to about 20 f;. However it should be noted that the
gate aray is tiny and the work is gill at a preliminary phase. The quality of the
frequency response in meding the spedfication is encouraging. In sedion 4.1 are
shown the output responses of the filter to incident pure sine signals and also the
output response in the frequency domain. Sine waves in the passdand are being passd
with little dtenuation, however it can be seen espedally in the cae of the lowest
frequency sine wave (Fig. 4) that there is the largest distortion of the signal. In Figures
6 and 7 the incident sine signals have frequencies in the stopband so they should be
highly attenuated. One can seethat there is a marked drop in signal amplitude & the
signdl is converging to a d.c. component. As the frequency of the incident signals are
increased the off d.c. spikes become more and more sparse. Actualy there is
something a little puzzing here & the fitness function is designed to suppress
frequencies in the stopband with uriform probability so that the atenuation of those
frequencies sould show no frequency dependent behaviour. The reason for thisis not
currently understood hut it may be due to a frequency dependent distortion in the
incident sine signals. In Figs. 8-12 are shown the output responses of the filter to
various 3ims of sine waves. All these signals have never been seen by the filter before.
In Fig. 8 it can be seen that the filter is exaggerating the changes in amplitude of the
incident signal. The frequency response shows the dominant frequencies to be the
same & the incident. Thefilter is displaying a nealy or quasi-linea response. In Figs.
9 and 10the higher frequency lies in the stopband thus for ided filter behaviour one
would exped the higher frequency component to be highly attenuated. The evolved
filter appeasto be doing this as it is responding to the slower changes in the signal.
This is confirmed by the frequency responses. In Figs. 10 and 11 more @mmplex
signals were presented to the filter. These were sums of three sine waves. In the first
case (Fig. 11) two components were in the passand. Again the filter is gill trying to
follow the slower changes and the frequency response is dominated by the lower
frequencies. In Fig. 12 al the frequencies lay in the passand, again it is e that the
filter istryingto follow all the changesin the incident signal. However once ajainit is
exaggerating the changes.

5.2 Hardware requirements and speed of evolved filter compared with
conventional

When the evolved filter circuit was analysed it was found to require 29 multi plexers
(equivalent to 87 two-input gates). In addition the filter would produce the filtered
response very quickly as one only has to wait for the signals to propagate through the
gate-array. A conventional filter of order 4 and wordlength 8 would require & least an
eight-bit adder and multiplier as well as registers to store the wefficients. A
conventional cdlular adder and multiplier of this szewould require n® AND gates and
n(n-1) full adders (where n=8). Thus it would require 344 two-input gates. The output
would be delayed by a number of clock cycles to acaimulate the response (see
eguation 1).



6 Conclusions

In this paper it has been shown that it is posdble to evolve filtering charaderistics
with a gate-array containing very few components. The gate-array filter is produced
without many of the conventional asaumptions in that it does not employ coefficients
or any explicit arithmetic operations. The evolved filter has a quasi-linea response
that has emerged naturally. There is currently no mathematicd framework for
understanding how to designfiltersat thislevel. It isfelt that the results presented here
may encourage some thinking about a mathematica underpinning of this. There is gill
an enormous amourt of further investigation to be undertaken. The work raises almost
as many questions as it answers. Why is the evolved filter quasi-linea? Can one
evolve it in such a way as to enhance its lineaity? Would this require greaer gate
resources? What would the filtering adion of cascades of these smaller filters be like?
How would the filter response to changesin phase of the incident sine waves? It is felt
that this work once gain demonstrates the enormous cgpadty of a few gatesto display
complex behaviours, a fad which has become evident in much work in the field of
evolvable hardware [16].
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