
Reservoir Computing in Materio: An Evaluation of
Configuration through Evolution

Matthew Dale∗ & Susan Stepney
Department of Computer Science

University of York, UK
Email: md596@york.ac.uk & susan.stepney@york.ac.uk

Julian F. Miller & Martin Trefzer
Department of Electronics

University of York, UK
Email: julian.miller@york.ac.uk & martin.trefzer@york.ac.uk

Abstract—Recent work has shown that computational sub-
strates made from carbon nanotube/polymer mixtures can form
trainable Reservoir Computers. This new reservoir computing
platform uses computer based evolutionary algorithms to op-
timise a set of electrical control signals to induce reservoir
properties within the substrate. In the training process, evolution
decides the value of analogue control signals (voltages) and the
location of inputs and outputs on the substrate that improve the
performance of the subsequently trained reservoir readout.

Here, we evaluate the performance of evolutionary search
compared to randomly assigned electrical configurations. The
substrate is trained and evaluated on time-series prediction using
the Santa Fe Laser generated competition data (dataset A). In
addition to the main investigation, we introduce two new features
closely linked to the traditional reservoir computing architecture,
adding an evolvable input-weighting mechanism and a reservoir
time-scaling parameter.

The experimental results show evolved configurations across
all four test substrates consistently produce reservoirs with
greater performance than randomly configured reservoirs. The
results also show that applying both input-weighting and time-
scaling simultaneously can provide additional tuning to the task,
improving performance. For one material, the evolved reservoir
is shown to outperform – for this task – all other hardware-
based reservoir computers found in the literature. The same
material also outperforms a simple evolved simulated Echo State
Network of the same size. The performance of this material is
reported to be both consistent after long time-periods and after
reconfiguration to other tasks.

I. INTRODUCTION

The future of conventional computing depends upon over-
coming some fundamental engineering hurdles, such as deal-
ing with an exponential growth in design complexity, the
physical limits of transistor size, overcoming the processor-
memory transfer (von Neumann) bottleneck, and satisfying
an increasing desire for massively parallel, low-power, robust
and fault-tolerant computing. The field of Unconventional
Computing provides a unique insight into non-standard forms
of computation where many of these engineering hurdles can
be reduced, or avoided. In this work, we present an unconven-
tional computing system where computation is extracted from
a physical substrate in response to signals selected through
artificial evolution. The substrate performing computation re-
quires almost no design expertise, no separate memory entities,
has natural parallelism, and requires little power (mW).

The theoretical framework of the proposed hardware-based
Reservoir Computer is derived from two disciplines of re-

search; Evolution in Materio and Reservoir Computing. Evo-
lution in materio attempts to evolve physical computational
machines from often design-less and unconstrained materials
through computer controlled evolution [1]. Similar conceptual
ideas can be seen in and around the cybernetics movement
of the 1940s through pioneering cyberneticians such as Gor-
don Pask and Stafford Beer (see [1]). However, not until
Thompson [2] exploited the low-level physics of silicon-based
electronic devices through computer controlled evolution was
it so distinctly demonstrated. Thompson’s work showed that
blind evolution could harness the unknown physical properties
of modern electronic devices to create often unusual solutions.
Harding et al. [3] continued this work, refining the technique
and introducing new substrates, such as a liquid crystal display,
magnetic quantum dots, a crystal lattice and an optical device.
More recently, the EU-funded NASCENCE project [4] devel-
oped new evolvable nanosystems and unconventional hardware
interfaces, including carbon nanotube based composites (with
static and dynamic structures), disorganised gold-nanoparticle
networks, and a bespoke computing platform [5]–[8]. The
field of Reservoir Computing was originally conceived from
two complementary independent investigations; designing a
computational model for real-time continuous cortical micro-
circuits (Liquid State Machine) [9], and an efficient technique
for training discrete artificial recurrent neural networks (Echo
State Networks) [10]. After its inception, the reservoir model
emerged as a potential computational model for many dynam-
ical systems and has been applied to several systems, such as
a bucket of water [11], optoelectronic and photonic systems
[12]–[14], and memristive networks [15], [16].

In this paper, we compare the performance of evolutionary
search versus random search to configure substrates into
functional reservoir computers. To configure a substrate into
a working reservoir a variety of parameters exist, such as the
placement of task inputs and outputs on the electrode array
interfacing the material, the placement of additional stimula-
tion (referred to as control signals) and the voltage value of
those signals. In previous work the values and choices of these
parameters have been evolved using an evolutionary algorithm.
Here we evaluate if there is a computational advantage to
using evolution compared to just using randomly assigned
parameters. The assumption that evolution is efficient at creat-
ing reservoirs in materio is currently unproven. Configuration

through random search has been documented only once in
the evolution in materio literature, using Harding’s evolvable
Liquid Crystal Display [17]. In that work, Harding concluded
that using random search alone was not sufficient to create
the desired non-linear functions for that particular hardware
platform. This assumption appears to have carried forward to
other platforms within the NASCENCE project without further
investigation. Conducting a separate investigation into random
search for this new computational machine is necessary as
there are fundamental differences in hardware and training
methods.

After the evaluation of the search method, we introduce
two new features based on counterparts found within simulated
reservoirs: (i) Input weighting, a new input encoding analogous
to traditional neural network input weighting where the input
is directed to multiple locations on the substrate (with an
assigned weight/scaling factor) rather than to a single location;
(ii) Time scaling, a time-scale parameter that allows the search
process to adapt the response of the material towards the time-
scales of the task, reducing the mismatch between the natural
time-scale of the material and the time-scale of the task.

II. RESERVOIR COMPUTING MODEL

The reservoir model presents us with an abstract theory of
computation that allows us to extract and exploit real-time
computation from an analogue system. The model used is
derived from the sub-fields Echo State Networks and Liquid
State Machines.

The echo state network approach has become a simple
and efficient training mechanism that removes the often
cumbersome, internal gradient-descent based training used in
traditional recurrent neural networks. In echo state networks,
the discrete state of each neuron can be mathematically repre-
sented as an “echo” of its input and state history. This flavour
of reservoir typically consists of a fixed random network of
sigmoidal neurons exhibiting certain desirable properties, such
as sparse connectivity and a fading memory (the echo state
property [10]). The network is input-driven by a one- or multi-
dimensional signal and its collected neuron activations are
trained using a simple linear readout layer. Despite removing
the internal training mechanism, echo state networks are found
to be very competitive, simplifying the training process and
avoiding expensive update cycles experienced in traditional
recurrent networks.

The liquid state machine approach emerged as a model of
computation for real-time adaptive (learning) computational
systems. The motivation arose from a desire to create a
model that could more accurately describe the continuous-
time computational processes of biological neural networks
compared to the Turing and other attractor-based models. For
the purposes of our application, there are attractive features
of this model, discussed in [18]: (i) heterogeneous behaviour
can increase computational power; (ii) a non-linear projection
of the input into a high-dimensional state space (similar to a
kernel function) can theoretically lead to a universal function
approximator, if the Separation and Universal approximation

property is present; (iii) computational functions are “liquid”,
encompassing continuous time and states, rather than exhibit-
ing discrete finite states, leading to a unique generalisation ca-
pability; (iv) the computational model promotes and provides
a framework for “the invention of radically different artificial
computing devices that exploit, rather than suppress, inherent
properties of diverse physical substances” [18].

Combining the theory and practices from both approaches,
we can conveniently apply the reservoir model on an evolv-
able substrate given three requirements: (i) a material that
can exhibit desirable dynamical properties (fading memory,
separation, and the universal approximation property) either
naturally, or when given perturbation via external stimulus;
(ii) a method of observation to access and separate localised
states of the system; (iii) a mechanism to linearly combine
and train states to perform a desired computational task. This
new evolvable hardware-based reservoir computer was first
demonstrated in [19].

The reservoir model can represent any excitable non-linear
medium that produces a high-dimensional projection of the
input u(.) into reservoir states x(.). In a conventional echo
state network, the reservoir state update equation x(n) is
represented as:

x(n) = f(Winu(n) +Wx(n− 1) +Wfby(n− 1)) (1)

where the weight matrices (Win,W,Wfb) are collections of
sparse connection weights to inputs (Win), outputs (Wfb

feedback connections), and internal neurons (W). The final
trained output y(n) is given when the reservoir states x(n)
are combined with the trained readout layer Wout:

y(n) = Woutx(n) (2)

A reservoir primarily acts as an adaptable non-linear filter,
performing non-linear functions on input data that can be
subsequently extracted using a trained linear readout. This
simplification of the training process avoids the inefficiencies
of classical recurrent network training, but also implies the
reservoir should be sufficiently rich to project the input into
a high-dimensional space and therefore approximate many
functions. This is sometimes referred to as the “kernel quality”:
the ability to separate features within the input (known as the
separation property), or the functional degrees of freedom that
exist in the reservoir (known as the universal approximation
property) [20].

To apply the reservoir model to our system, we have to adapt
the state update equation (1) to represent an observed state
of the system. The observed reservoir state x(n) combines
the continuous (t) material and the discrete (n) observation
function as:

x(n) = Ω(E(u(t), uconfig(t))) (3)

where Ω(n) is the observation of the macroscopic material
behaviour (converted from analogue to digital), and E(t) the
microscopic material function when driven by the input u(t)
and other evolved control signals uconfig(t) (converted from
digital to analogue).

These additional control signals uconfig(t) are used to
tune the electrical characteristics of the material. This can
be viewed as perturbing the material into different dynamical
regimes through the manipulation of electrical pathways. The
hypothesis is that evolved control signals, and the placement
of inputs and outputs, can alter the quality of the reservoir,
tuning properties such as the separation, approximation and
echo state property of the material function E(t).

III. RESERVOIR PARAMETERS

When designing a reservoir some level of expertise is
required to set parameters to task-dependent values. These val-
ues directly affect the reservoir’s internal dynamics, memory,
and general responsiveness. In an unconventional reservoir,
manipulating the same desirable properties may require ad-
ditional, and somewhat different parameters and techniques.
For example, in an optoelectronic system it may require the
tuning of a bias that controls the non-linearity of a signal
modulator [21]. The unique parameters used in our in materio
system describe the role and value of each electrode, for
example, is an electrode assigned to be an input, output,
or a control signal. These flexible parameters are selectively
chosen through evolution to improve the performance of the
readout layer. This follows the evolution in materio hypothesis
that applying external stimuli, or some means of configura-
tion (structural or electrical) can favourably manipulate the
substrate’s computational ability to solve a task. In addition
to these parameters, we introduce here two new evolvable
features from the traditional reservoir model, and evaluate if
any significant performance boost can be acquired.

A. Input Weighting

The standard input mechanism used in the evolution in ma-
terio technique is to assign each input to a single electrode. In
this experiment, we change the one-for-one input mechanism
(Fig. 1a) to a one-to-many input mechanism (Fig. 1b) where
the task input is supplied to multiple electrodes on the material,
each being multiplied by some weight. This technique is more
typical of the traditional reservoir computing method, where
each input source is connected to the network via an input
weight matrix Win (see eqn.(1)). No experimental data, or
discussed intuition on this type of input mechanism, is shown
in the evolution in materio literature. The hypothesis here
is that adding multiple signal sources could promote more
complex interactions, activating regions where the material
may be electrically weakened, or isolated from the input.

The input weights for our system are chosen through
evolution and are bounded between [−5V, 5V]. When input-
weighting is used, the control signals are not used. This is due
to current hardware limitations on the size of the electrode
array (12 electrodes). In total, evolution is restricted to 5
weighted inputs at any one time on the electrode array. In
an ideal scenario, using both a weighted input mechanism
and controls signals may be desirable, but not realistic on the
current size of array.

B. Time Scaling: The Leak Rate Parameter

The ability to adjust the temporal response of the reser-
voir in respect to both the input and desired output can be
advantageous. A simple example is to adjust the internal
time-scale of the reservoir to the sampling rate at which
the data was collected [22]. Time-warping invariant ESNs
(TWIESN) do this when sampling from continuous data to
discrete data overcoming common time-warping problems
within recognition tasks [23]. Multiple time-scaling methods
have been investigated for reservoir computing, including input
and output re-sampling and time-scaling at precise points
within the state collection, e.g. before and after any non-
linearity is introduced [24].

In our physical reservoir system, the material will function
at a natural time-scale which may or may not be adaptable.
Developing a method to match the material and task time-
scales could offer additional improvements in performance.
To adjust the time-scale of the proposed reservoir system, we
apply and adapt an external Leak Rate parameter derived from
Leaky Integrator Echo State Networks (LI-ESN) [22], [24]. To
fit the practicalities of the system, leaky integration has to be
performed after the observation function. This effectively turns
the leak rate parameter α into a simple adjustable digital low-
pass filter, producing a smoothing effect which controls the
speed of the reservoir’s dynamics. This filtered reservoir state
is:

x̃(n) = (1− α)x(n− 1) + αΩ(E(u(t), uconfig(t))) (4)

The parameter α has a range between [0,1]; it neither retains,
nor leaks beyond the original boundaries of x(n). When time-
scaling is not used, α = 1, and eqn.(4) reduces to eqn.(3).

IV. EXPERIMENTAL SET-UP

The evolutionary training and evaluation of the material
is conducted on a digital computer (see Fig. 2). The com-
puter communicates with the material through two National
Instruments Data Acquisition (DAQ) cards. The output DAQ
card converts the evolved configuration into analogue voltages
(task input and control signals) and digital control signals
(describing the signal mapping). At the same time, the input
DAQ card is set to receive analogue voltages. The number
of input signals recorded by the card determines the number
of reservoir states available from the material. Both input and
output cards route to a 16 × 16 cross-point switch that converts
the evolved mapping into the final electrode configuration.

A. Materials

In this experiment we investigate four substrates provided
to us by the NASCENCE project. The first two test substrates
consist of Single-Wall Carbon Nanotubes (SWCNT) with con-
centrations of 0.53% and 1% (w.r.t. weight) mixed with poly-
butyl methacrylate (PBMA). The third consists of a SWCNT
concentration of 0.1% mixed with poly-methyl methacrylate
(PMMA). Each substrate is dissolved in anisole with approx-
imately a 20ml mixture dispensed onto the electrode array,
which is then heated until dry. A gold resistor array is used

x3(n)

x5(n) x6(n)

GND x2(n)

x1(n)

u(n)

x7(n) x4(n)

u1(n)

u2(n)

u3(n)

u4(n)

x(n)

x(n)

V1 = -0.25v

x3(n)

x4(n)

x5(n)

x6(n)

x7(n) GND

x2(n)

x1(n)

V2 = 2.87v

u(n)

x8(n)

Max Gen
Reached ?

No

Yes Evaluate
on Test Set

Train Material
Output

Select Parent
Reservoir

Mutate Parent
Reservoir

Initialise

DAC ADC

16 x 16 Cross-point
Switch

(map Genotype to
Phenotype)

Configurable Material
(on Electrode Array)

u(n)

u(t)

x(n)

Analogue Output

x(t)

Analogue Input
(incl. “configuration” voltages)

Computer-Controlled- Evolution

(a) Static Voltages

x3(n)

x5(n) x6(n)

GND x2(n)

x1(n)

u(n)

x7(n) x4(n)

u1(n)

u2(n)

u3(n)

u4(n)

x(n)

x(n)

V1 = -0.25v

x3(n)

x4(n)

x5(n)

x6(n)

x7(n) GND

x2(n)

x1(n)

V2 = 2.87v

u(n)

x8(n)

Max Gen
Reached ?

No

Yes Evaluate
on Test Set

Train Material
Output

Select Parent
Reservoir

Mutate Parent
Reservoir

Initialise

DAC ADC

16 x 16 Cross-point
Switch

(map Genotype to
Phenotype)

Configurable Material
(on Electrode Array)

u(n)

u(t)

x(n)

Analogue Output

x(t)

Analogue Input
(incl. “configuration” voltages)

Computer-Controlled- Evolution

(b) Input Scaling

Fig. 1: Examples of the two input mechanisms used; a) configuration through static voltages (based on evolution in materio
technique), and b) using multiple weighted inputs to various locations on the array (based on reservoir model). In the input-
weighting scheme each input ui(n) is multiplied by a weight stored in the genotype.

as the fourth (control) substrate. The array is patterned onto
a glass slide using etch-back photo-lithography. The resistor
array was found to be a competitive reservoir when applied to
other benchmark problems in [19].

V. TIME-SERIES PREDICTION

In this experiment we have chosen a time-series prediction
benchmark often used in reservoir computing literature. The
task is to predict the next value of the Santa Fe time-series
Competition Data (dataset A)1. This dataset holds original
source data recorded from a Far-Infrared-Laser in a chaotic
state. In the training process the first 5000 values of the
dataset are used. This is sub-divided into three sets: 2500
values for the reservoir weight training process (training set),
1250 for the evaluation of each trained reservoir (validation
set), and 1250 values to re-evaluate the final evolved reservoir
(test set). The first 50 values of each sub-set are discarded
as an initial washout period. Before applying the datasets
to the material, a simple evaluation of task complexity was
conducted. When comparing the original input and output of
the test set, i.e. E(u(n), ytarget), a Normalised Root Mean
Squared Error (NRMSE) = 0.9771 was achieved. Using the
linear model (y = Woutu(n)) trained on the target ytarget
an NRMSE = 0.9241 was achieved. These results imply a
significant level of additional processing is required by the
material to reduce the NRMSE.

VI. TRAINING PROCESS

A. Representing a Material Configuration

The mapping that constitutes an electrical configuration of
the material is represented as a digital, 22-gene (genotype)
string of integers and floating-point numbers. The first 12
genes in the genotype hold the functional role of each electrode
on the array, i.e. whether an electrode is an input, output, or

1Dataset available at [25] and directly through MATLAB’s Neural Network
Toolbox Sample Data Sets: http://uk.mathworks.com/help/nnet/gs/neural-
network-toolbox-sample-data-sets.html

an additional control signal/weighted input. The next 4 genes
represent the floating-point values for each control signal, or,
the weight value if the input-weighting mechanism is used.
An additional 4 inactive genes are added to allow evolution to
dynamically select the size of the reservoir, i.e. the number of
material states in use. The final two genes in the genotype hold
the floating-point value for the time-scaling parameter (α) and
the weight value for the one input that is always required.

The reservoir model provides flexibility in how many output
electrodes (reservoir states) can form the task output. This
differs from the evolution in materio technique where the
number of output electrodes is predefined and task-dependent:
an individual electrode will typically form one task output.
To let evolution exploit this flexibility we have added inactive
genes to the genotype. To implement this in hardware, we use
all available channels on the 16-channel cross-point switch.
This leads to a maximum of 4 inputs (or 4 control signals)
and a maximum of 10 outputs that can be re-routed from the
DAQ cards to the electrode array. When combined with the
task input and ground signal, this creates a pool of 16 possible
connections that can be mapped onto each electrode on the 12
electrode array. This collection of all possible connections is
stored in the genotype as active and inactive genes. Here is
an example of two individuals that have different genotypes in
the same population: The first genotype consists of a ground
connection, the task input, 3 control signals and 7 output
electrodes – these represent the 12 active genes mapped to the
electrodes. The remaining unassigned connections, i.e. the 1
control signal and 3 outputs are stored as inactive genes. The
second individual’s genotype consists of a ground, 5 inputs
(using the input-weighting scheme) and 6 output electrodes,
leaving 4 redundant output connections stored as inactive
genes.

B. Training the Material

The evolutionary algorithm used to find task-specific signal
mappings is based on a mutation only (1 + 4) evolutionary

x3(n)

x5(n) x6(n)

GND x2(n)

x1(n)

u(n)

x7(n) x4(n)

u1(n)

u2(n)

u3(n)

u4(n)

x(n)

x(n)

V1 = -0.25v

x3(n)

x4(n)

x5(n)

x6(n)

x7(n) GND

x2(n)

x1(n)

V2 = 2.87v

u(n)

x8(n)

Max Gen
Reached ?

No

Yes Evaluate
on Test Set

Train Material
Output

Select Parent
Reservoir

Mutate Parent
Reservoir

Initialise

DAC ADC

16 x 16 Cross-point
Switch

(map Genotype to
Phenotype)

Configurable Material
(on Electrode Array)

u(n)

u(t)

x(n)

Analogue Output

x(t)

Analogue Input
(incl. “configuration” voltages)

Computer-Controlled- Evolution

Fig. 2: The reservoir training process. (1) Material is stim-
ulated by input(s) and control signals provided by computer
controlled evolution. The readout layer Wout is trained on the
training set. (2) The material is stimulated with the validation
set. The trained readout is combined with the electrode read-
ings and the reservoir is evaluated to give its fitness (error).
(3) A new population is created from the reservoir readout
and material configuration producing the smallest error. The
process repeats until the maximum number of generations is
reached. (4) The final evolved reservoir is re-evaluated on the
test set, providing the final reported test error.

strategy (ES). This is compared to random search, where each
configuration is a random initiation of the genotype selected
from a uniform distribution of the minimum and maximum
values possible for each gene. In both searches, a maximum
of 750 fitness evaluations are conducted per run, for 10 runs.
Each set of 10 runs typically takes 5 hours to complete for
each material.

Other training techniques to find material configurations that
create reservoir behaviour could be considered. Examples from
evolution in materio include differential evolution [26], [27],
particle swarm optimisation [27], genetic algorithms using
crossover and mutation [7], [28], and global and local search
[29].

The overall training process features four signposts (see
Fig.2):

1) Reservoir Creation: The material configuration held
in the genotype is loaded onto the cross-point switch,
establishing communication between the DAQ cards
and the material. The material is stimulated and the
output response is trained on the training set using
Ridge Regression (with Tikhonov regularisation) to
create the output weights Wout:

Wout = ytargetX
T (XXT + βI)−1 (5)

where ytarget(n) is the teacher signal, I the identity
matrix, X the collected state matrix, and β the reg-
ularisation parameter. The material configuration and

TABLE I: The minimum and mean test error (NRMSE) for
both search methods across 10 runs. (Standard deviation in
brackets.)

Material Evo Min. Rnd Min. Evo Avg. Rnd Avg.

PMMA 0.1% 0.416 0.522 0.443 (.011) 0.651 (.106)

PBMA 0.53% 0.440 0.519 0.454 (.011) 0.656 (.111)

PBMA 1% 0.242 0.439 0.306 (.056) 0.489 (.042)

Resistor 0.498 0.582 0.536 (.023) 0.756 (.082)

trained weights are then reapplied and the reservoir is
evaluated on the validation set. The trained output of
the reservoir is given by y(n) = Woutx̃(n). The pro-
cess is repeated for every individual in the population.

2) Reservoir Selection: The validation set error of each
individual is compared. The reservoir producing the
lowest error is selected and compared to the global
best solution. If the error is below the global, the new
reservoir becomes the parent and passes its genotype
onto the next generation.

3) Create a New Population: A new population is cre-
ated from the parent reservoir using a single random
mutation. The mutational function on the genotype
depends on a mutation probability assigned to: a one-
for-one swap between active genes (20%), replace an
active gene with an inactive gene (20%), or, adjust the
value of the control signal/input weight/time-scaling
parameter α (60%) using Gaussian noise (bounded by
the min/max voltage range).

4) Final Reservoir Assessment: Once evolution is com-
pleted, the global best configuration and trained readout
Wout is reloaded and reapplied. The material is then
evaluated on the test set, giving the final reported
NRMSE. This last stage tests the reservoirs general-
isation to new data and its configuration stability, i.e.
its repeatability and consistency of behaviour to the
same configuration and stimulus.

VII. EXPERIMENTAL RESULTS

In all substrates tested, evolution outperforms random search
(see Table I). The results for the SWCNT/PBMA 1% material
tend to outperform the other materials using both random and
evolutionary search. On average, using random search with the
SWCNT/PBMA 1% material still outperforms the best evolved
resistor configuration. This result is significant when compared
to the results found in the previous experiment [19] where the
performance gap between the configured resistor and the con-
figured materials was smaller than anticipated. These results
also suggest improved reservoir performance/computational
ability with a SWCNT density around the percolation thresh-
old of 1%, as stated in [5].

The results for the newly introduced input-weighting and
time-scaling features shown in Fig. 3 are somewhat mixed.
When only applying the input-weighting mechanism, error im-
proves on average compared to no features being used. When

A B C D

E
rr

o
r

(N
R

M
S

E
)

0.2

0.3

0.4

0.5

0.6

1%

A B C D

0.45

0.5

0.55

Resistor

A B C D

E
rr

o
r

(N
R

M
S

E
)

0.4

0.42

0.44

0.46

0.48

0.5
0.1%

A B C D

0.42

0.44

0.46

0.48

0.53%

Fig. 3: Analysis of new features when added to each material:
test set error decreases when input-weighting is used, and in
some cases decreases further when time-scaling also used.
Four combinations are assessed over 10 evolutionary runs: (A)
No features used, i.e. applying only control signals with no
time-scaling; (B) control signals and time-scaling; (C) input-
weighting with no time-scaling; (D) both input-weighting and
time-scaling applied to the reservoir.

No. of Generations
0 50 100 150

E
rr

o
r

(N
R

M
S

E
)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Evolutionary Run: Input-Weighting and Time-Scaling

PMMA 0.1% CNT
PBMA 0.53% CNT
PBMA 1% CNT
Resistor

Fig. 4: An evolutionary run of each material with both time-
scaling and input-scaling applied. The variation in error, both
here and in Table I, suggests the complexity of the search
space is somewhat dependent on nanotube density.

combining both input-weighting and time-scaling the best
runs improve significantly, but the same improvement is not
consistent across all runs. Despite only a 150 generations being
performed, the best case found has an average improvement
of 15%, and the worse case an improvement of 3%. The most
notable performance increase is seen in the SWCNT/PBMA
1% material which already far outperforms the others. This
implies both input-weighting and time-scaling can refine and
tune both poor and good performance material reservoirs.

Time interval
1 Hour 1 Day 1 Week

%
 C

ha
ng

e

0

2

4

6

8

10

12
% Change of Evolved Error over Time

Min.
Average

Fig. 5: A graph of the percentage change in error from the
original evolved test set NRMSE of 0.195 over different time
periods. This is shown for the best reservoir found with
the SWCNT/PBMA 1% material using both time-scaling and
input-weighting.

However, applying time-scaling by itself does not, on average,
always offer an improvement in performance. This suggests
some interesting relationship between time-scaling and the
input-weighting mechanism that requires further investigation.
Fig. 4 shows a single evolutionary run of each material using
both input-weighting and time-scaling.

As a final experiment, a small consistency test was con-
ducted showing the materials’ change in performance over
time. As the material is passive with a static structure,
reproducing the same behaviour without large fluctuations
in performance is assumed. The possibility of any drift in
performance with time should be taken into consideration for
any future applications, and in particular where the system
is argued as a robust solution. In this consistency experiment,
three separate sets of re-evaluations are carried out on the best
performance reservoir found. Each evaluation set consists of
100 reassignments of the configuration and the trained readout
after a time period of: i) an hour, ii) one day and iii) one
week. Before the last set, the material was evolved several
times to solve a different computational task. Fig. 5 shows
the percentage change, i.e. % change = (new error – initial
error) / abs(initial error)) × 100), between the first evolved
error (NRMSE=0.195) and after each time-period. The results
show average error after a time-period of a week increased
by 10.6% from the initial NRMSE of 0.195 to 0.2157. This
simple experiment provides an insight into the materials’ drift
in performance over time; an in-depth investigation into this
phenomenon is still required.

VIII. COMPARISON TO OTHER RESERVOIR SYSTEMS

The proposed system, in the context of other reservoir
systems, shows very competitive results. Table II shows a com-
parison between the in materio reservoir, simulated/numerical
reservoirs and hardware reservoir computers. Three evolved
(simulated) echo state networks (ESNs) are also provided. The
evolvable parameters for these networks are; the spectral ra-
dius (controlling fading memory and dynamics), input scaling

TABLE II: Comparison table of other reservoir computing
systems, with our system highlighted.

Reservoir Type NMSE NRMSE Res. Nodes

Echo State Network (evolved) 0.009 0.098 50

Echo State Network [30] 0.018 0.134 50

Optoelec. (numerical) [31] 0.02 0.141 200

Optoelec. (numerical) [32], [33] 0.022 0.148 200

Mackey-Glass Oscillator [34] 0.023 0.151 50

In materio Reservoir 0.038 0.195 7

ESN (evolved and sampled) 0.042 0.205 7 (50)

Echo State Network (evolved) 0.055 0.235 7

Optoelec. (experimental) [32], [33] 0.106 0.326 200

Optoelectronic [13], [34] 0.123 0.35 400

(tuning non-linearity of the tanh neurons) and leak rate (time-
scaling). Each evolved network uses the same evolutionary
process and number of evaluations as the material. Two
variations of these ESNs are also given; two networks where
every node is used (i.e. 7 or 50 neurons), and a 50 node ESN
with 7 nodes randomly sampled to form the trainable states.

Table II shows that the in materio (SWCNT/PBMA) reser-
voir outperforms all of the experimental optoelectronic reser-
voirs found in the literature on this task, with a significant
reduction in the number of states used. The SWCNT/PBMA
reservoir also outperforms the evolved 7 node ESN and the
evolved/sampled 50 node ESN. The relationship in perfor-
mance between the sampled and non-sampled networks could
provide an insight into how the reservoir might scale with
more electrodes, e.g. if the same relationship exists, a 50 node
SWCNT/PBMA reservoir could produce an NRMSE < 0.098.

IX. DISCUSSION OF THE RESERVOIR MODEL

In contrast to the output technique used in evolution in
materio, the reservoir derives its output from the cumulative
behaviours of multiple electrodes. The readout layer is used
to selectively choose and separate interesting output signal
patterns. This output mapping could lead to several advan-
tages: (i) a layer of abstraction that extends the material’s
“programmability”; (ii) provide a more robust/fault tolerant
output; (iii) suggest an output mechanism that can scale with
hardware and task complexity; (iv) offer the opportunity to use
multiple observation methods to define the task output, i.e. an
output could combine electrical, thermal, optical and many
more types of observation. However, a possible disadvantage
to the reservoir implementation is a desire for more observable
states, and therefore a more fine-grained observation mecha-
nism to fully extract the materials computational complexity.

The conventional reservoir model, despite its advantages
and suitability, does possess limitations; reservoirs sometimes
deal poorly with simultaneous multiple time-scales [35]. A
number of suggestions and demonstrations as to how this
can be solved are discussed in [36], [37], such as creating
hierarchical and modular reservoir systems. Implementing an

extendible structure in hardware is an intriguing concept for
several reasons; not only can it solve issues with time-scaling
but it could result in a larger reservoir system with vast
reservoir/material diversity. This diversity could come from
multiple materials exhibiting different reservoir properties. A
system like this could, in some sense, complete the vision
of Miller’s high-performance analogue computer made up
of evolved materials that form functional primitives [1]. To
extend the current system, both input-weighting and time-
scaling would be useful features in implementation.

Tuning the dynamics and fading memory of our in materio
reservoir is a difficult task resolved by evolving suitable
material configurations. However, if configuration alone is
not sufficient to induce the desired internal dynamics, other
options can be explored from the reservoir computing litera-
ture. Theorem 1.2 in [18] states that Liquid State Machines
overcome the limitation of a fading memory if feedback is
allowed to flow from the readouts back into the system. This
is also a prominent mechanism found in Echo State Networks,
as shown in eqn.(1). Feedback, and the flow of information in
both directions, is a property often found exploited by the
architecture of the neocortex [38]. Adding feedback to our
system is an interesting avenue worth pursuing.

X. CONCLUSION

To understand and exploit the underlying physics of sub-
strates requires a suitable computational model. Here we
suggest and demonstrate the Reservoir Computing model as
a possible candidate. The reservoir model combined with the
evolution in materio technique observes, exploits and gives
rise to different macroscopic material behaviours with no
pre-knowledge of the system. It translates these behaviours
through a trained linear output layer into a meaningful task
output.

In this paper, we have demonstrated that configuring a
material with random search is inefficient; evolution clearly
provides a computational advantage across all the substrates
investigated. However, a wider investigation is still required
into what training algorithms could best be used to discover,
or induce reservoir properties from materials. We have also
introduced two new features (time scaling and input weighting)
that were found to, in general, improve performance over the
original technique. This improvement is greater in materials
already possessing good reservoir properties, suggesting ad-
ditional fine tuning of in materio reservoirs is possible. The
results on the prediction task demonstrate competitive perfor-
mance compared to other unconventional reservoirs, despite
a large reduction in observable reservoir states. A simple
consistency experiment also suggests the evolved solutions
experience only a small drift in performance despite long
time-periods and training on unrelated tasks. Finally, we have
discussed a number of future modifications to the system,
suggesting many routes to exploit the full advantages of this
new substrate-based reservoir computing system.

ACKNOWLEDGEMENTS

This work was funded by a Defence Science and Tech-
nology Laboratory (DSTL) PhD studentship. The authors
thank the EU NASCENCE Project for providing the SWCNT
materials used in this work.

REFERENCES

[1] J. F. Miller, S. Harding, and G. Tufte, “Evolution-in-materio: evolving
computation in materials,” Evolutionary Intelligence, vol. 7, no. 1, pp.
49–67, 2014.

[2] A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with
physics,” in Evolvable Systems: From Biology to Hardware. Springer,
1997, pp. 390–405.

[3] S. Harding, J. F. Miller, and E. A. Rietman, “Evolution in materio:
Exploiting the physics of materials for computation,” Int J of Uncon-
ventional Computing, pp. 155–194, 2008.

[4] H. Broersma, F. Gomez, J. Miller, M. Petty, and G. Tufte, “Nascence
project: Nanoscale engineering for novel computation using evolution,”
International Journal of Unconventional Computing, vol. 8, no. 4, pp.
313–317, 2012.

[5] M. Massey, A. Kotsialos, F. Qaiser, D. Zeze, C. Pearson, D. Volpati,
L. Bowen, and M. Petty, “Computing with carbon nanotubes: Opti-
mization of threshold logic gates using disordered nanotube/polymer
composites,” Journal of Applied Physics, vol. 117, no. 13, p. 134903,
2015.

[6] D. Volpati, M. Massey, D. Johnson, A. Kotsialos, F. Qaiser, C. Pearson,
K. Coleman, G. Tiburzi, D. Zeze, and M. Petty, “Exploring the alignment
of carbon nanotubes dispersed in a liquid crystal matrix using coplanar
electrodes,” Journal of Applied Physics, vol. 117, no. 12, p. 125303,
2015.

[7] S. Bose, C. Lawrence, Z. Liu, K. Makarenko, R. van Damme,
H. Broersma, and W. van der Wiel, “Evolution of a designless nanoparti-
cle network into reconfigurable boolean logic,” Nature nanotechnology,
vol. doi:10.1038/nnano.2015.207, 2015.

[8] O. R. Lykkebø, S. Harding, G. Tufte, and J. F. Miller, “Mecobo: A hard-
ware and software platform for in materio evolution,” in Unconventional
Computation and Natural Computation. Springer, 2014, pp. 267–279.

[9] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[10] H. Jaeger, “The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical
Report, vol. 148, p. 34, 2001.

[11] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in
Advances in Artificial Life. Springer, 2003, pp. 588–597.

[12] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar,
J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information
processing using a single dynamical node as complex system,” Nature
Communications, vol. 2, p. 468, 2011.

[13] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutiérrez,
L. Pesquera, C. R. Mirasso, and I. Fischer, “Photonic information
processing beyond turing: an optoelectronic implementation of reservoir
computing,” Optics Express, vol. 20, no. 3, pp. 3241–3249, 2012.

[14] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier,
D. Verstraeten, B. Schrauwen, J. Dambre, and P. Bienstman, “Exper-
imental demonstration of reservoir computing on a silicon photonics
chip,” Nature Communications, vol. 5, p. 3541, 2014.

[15] M. S. Kulkarni and C. Teuscher, “Memristor-based reservoir comput-
ing,” in NANOARCH, 2012, IEEE/ACM International Symposium on
Nanoscale Architectures. IEEE, 2012, pp. 226–232.

[16] H. O. Sillin, R. Aguilera, H. Shieh, A. V. Avizienis, M. Aono, A. Z.
Stieg, and J. K. Gimzewski, “A theoretical and experimental study
of neuromorphic atomic switch networks for reservoir computing,”
Nanotechnology, vol. 24, no. 38, p. 384004, 2013.

[17] S. Harding, “Evolution in materio,” Ph.D. dissertation, University of
York, 2005.

[18] W. Maass, “Liquid state machines: motivation, theory, and applications,”
Computability in context: computation and logic in the real world, pp.
275–296, 2010.

[19] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “Evolving
carbon nanotube reservoir computers,” in International Conference on
Unconventional Computation and Natural Computation. Springer,
2016, pp. 49–61.

[20] R. Legenstein and W. Maass, “Edge of chaos and prediction of computa-
tional performance for neural circuit models,” Neural Networks, vol. 20,
no. 3, pp. 323–334, 2007.

[21] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Hael-
terman, and S. Massar, “Optoelectronic reservoir computing,” Scientific
Reports, vol. 2, 2012.

[22] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.

[23] M. Lukoševičius, D. Popovici, H. Jaeger, and U. Siewert, “Time warping
invariant echo state networks,” Tech. Rep., 2006.

[24] B. Schrauwen, J. Defour, D. Verstraeten, and J. Van Campenhout,
“The introduction of time-scales in reservoir computing, applied to
isolated digits recognition,” in Artificial Neural Networks–ICANN 2007.
Springer, 2007, pp. 471–479.

[25] A. Weigend, The Santa Fe Time Series Competition Data: Data set A,
Laser generated data, 1991 (accessed March, 2016). [Online]. Available:
http://www-psych.stanford.edu/ andreas/Time-Series/SantaFe.html

[26] A. Kotsialos, M. Massey, F. Qaiser, D. Zeze, C. Pearson, and M. Petty,
“Logic gate and circuit training on randomly dispersed carbon nan-
otubes.” International journal of unconventional computing., vol. 10,
no. 5-6, pp. 473–497, 2014.

[27] E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pear-
son, C. Groves, and M. C. Petty, “Training a carbon-nanotube/liquid
crystal data classifier using evolutionary algorithms,” in International
Conference on Unconventional Computation and Natural Computation.
Springer, 2016, pp. 130–141.

[28] O. R. Lykkebo and G. Tufte, “Comparison and evaluation of signal
representations for a carbon nanotube computational device,” in IEEE
International Conference on Evolvable Systems (ICES 2014). IEEE,
2014, pp. 54–60.

[29] K. Greff, R. Damme, J. Koutnik, H. Broersma, J. Mikhal, C. Lawrence,
W. Wiel, and J. Schmidhuber, “Unconventional computing using
evolution-in-nanomaterio: neural networks meet nanoparticle networks,”
Eighth International Conference on Future Computational Technologies
and Applications, FUTURE COMPUTING 2016, pp. 15–20, 2016.

[30] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Transactions on Neural Networks, vol. 22, no. 1, pp. 131–144, 2011.

[31] R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. Van der Sande,
“Reducing the phase sensitivity of laser-based optical reservoir comput-
ing systems,” Optics express, vol. 24, no. 2, pp. 1238–1252, 2016.

[32] K. Hicke, M. A. Escalona-Morán, D. Brunner, M. C. Soriano, I. Fischer,
and C. R. Mirasso, “Information processing using transient dynamics
of semiconductor lasers subject to delayed feedback,” IEEE Journal of
Selected Topics in Quantum Electronics, vol. 19, no. 4, pp. 1 501 610–
1 501 610, 2013.

[33] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel
photonic information processing at gigabyte per second data rates using
transient states,” Nature communications, vol. 4, p. 1364, 2013.

[34] L. Appeltant, “Reservoir computing based on delay-dynamical systems,”
These de Doctorat, Vrije Universiteit Brussel/Universitat de les Illes
Balears, 2012.

[35] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[36] H. Jaeger, “Discovering multi-scale dynamical features with hierarchical
echo state networks,” Technical report No. 9, 2007.

[37] Y. Xue, L. Yang, and S. Haykin, “Decoupled echo state networks with
lateral inhibition,” Neural Networks, vol. 20, no. 3, pp. 365–376, 2007.

[38] R. J. Douglas and K. A. Martin, “Recurrent neuronal circuits in the
neocortex,” Current Biology, vol. 17, no. 13, pp. R496–R500, 2007.

