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Abstract. An evolutionary algorithm is used as an engine for discovering new designs of digital circuits,
particularly arithmetic functions. These designs are often radically different from those produced by
top-down, human, rule-based approaches. It is argued that by studying evolved designs of gradually
increasing scale, one might be able to discern new, efficient, and generalizable principles of design. The
ripple-carry adder principle is one such principle that can be inferred from evolved designs for one and
two-bit adders. Novel evolved designs for three-bit binary multipliers are given that are 20% more

Ž .efficient in terms of number of two-input gates used than the most efficient known conventional
design.
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1. Introduction

Ž .Traditionally physical systems e.g., bridges, computers, mobile phones have been
designed by engineers using complex collections of rules and principles. The design
process is top-down in nature and begins with a precise specification. This contrasts
very strongly with the mechanisms which have produced the extraordinary diversity
and sophistication of living creatures. In this case the ‘‘designs’’ are evolved by a
process of natural selection. The design starts as a set of instructions encoded in
the DNA whose coding regions are first transcribed into RNA in the cell nucleus

Ž .and then later translated into proteins in the cell cytoplasm Coen, 1999 . The
DNA carries the instructions for building molecules using sequences of amino
acids. Eventually after a number of extraordinarily complex and subtle biochemical
reactions an entire living organism is created. The survivability of the organism can
be seen as a process of assembling a larger system from a number of component
parts and then testing the organism in the environment in which it finds itself. In
this paper this is referred to as assemble-and-test. Figure 1 illustrates this concept
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Figure 1. Conventional design versus evolutionary design with assemble-and-test.

in the general space of designs. The top-down rule-based space of designs is shown
in grey as a small subregion in the much larger space of all possible designs.
Occasionally by a process of human inspiration or accidental discovery this space is
widened as new concepts and principles are developed. Generally restrictive
assumptions have to be made about the range of parts which can be used within
this space. This is imposed by the constraints of a tractable system of rules. On the
other hand it is argued here that by employing the simple idea of assemble-and-test
together with an evolutionary algorithm one can explore the entire design space
and use a much larger collection of parts precisely because of the absence of
imposed rules of design.

The concept of assemble-and-test together with an evolutionary algorithm to
gradually improve the quality of a design has largely been adopted in the nascent

Žfield of E¨ol̈ able Hardware where the task is to build an electronic circuit Atmar,
1976; Higuchi et al., 1993a; Higuchi et al., 1993b; Kitano, 1994; Moreno, 1994;
Thalmann and Thalmann, 1994; Grimbleby, 1995; Kruiskamp and Leenaerts, 1995;
Higuchi and Iwata, 1996; Tomassini and Sanchez, 1996; Blickle, 1997; Sipper,

.1997a; Mange and Tomassini, 1998; Thompson, 1998b . The circuits are encoded in
genotypes from which the actual circuits or phenotypes are constructed. Research in
Evolvable Hardware can be subdivided into two main categories: intrinsic e¨olution
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and extrinsic e¨olution. The former refers to an evolutionary process in which each
phenotype is built in electronic hardware and tested. The latter uses a model of the
hardware and thus evaluates the phenotypes in software. Each of these categories
can be further subdivided into analogue or digital domains. Intrinsic evolution in
the analogue domain has recently become possible because of the availability of

Ž .reconfigurable analogue devices Motorola, 1997; Grundy, 1994 and already
researchers have begun to explore the possibilities for automatic design that they

Žafford Murakawa et al., 1998; Flockton and Sheehan, 1998; Zebulum et al., 1998;
Stoica et al., 1998; Zebulum et al., 1999; Stoica et al., 1999; Flockton and Sheehan,

. Ž . Ž1999 . Thompson 1997 used a reconfigurable digital platform Xilinx 6216 Field
.Programmable Gate Array and showed that it was possible to evolve a circuit

which could discriminate between two square wave signals of frequencies 1KHz
and 10KHz. It became apparent in this work that the evolutionary process had
utilized physical properties of the underlying silicon substrate to produce an

Ž .efficient circuit only a 10 = 10 array of logic cells had been allowed . Indeed
Ž .Thompson et al. 1999 have recently argued that artificial evolution can produce

intrinsic designs for electronic circuits which lie outside the scope of conventional
Ž .methods. Koza et al. 1996b, 1999 have pioneered the extrinsic evolution of

analogue electronic circuits using the SPICE simulator and have automatically
generated circuits which are competitive with those of human designers. Zebulum

Ž .et al. 1998 pointed out that analogue circuit simulation software assumes expert
users and that one must be very careful to apply additional physical constraints to
the particular simulation package being employed. However they showed that
provided that this is done one can obtain real behavior from an evolved circuit
which is in close accordance with that obtained in simulation. Intrinsic evolution

Ž .for purely digital systems has been pioneered by Kajitani et al. 1998 but most
Ž .workers are content with extrinsic evolution Miller et al., 1997; Iba et al., 1997 .

One of the advantages of extrinsic digital evolution is that one can obtain symbolic
representations of circuits which can be implemented on a variety of digital
platforms.

ŽThis paper is only concerned with the evolution of digital combinational non-
.sequential circuits. The paper concerns itself with just two kinds of digital

functions: even-parity functions and arithmetic functions. These are sufficient to
explore the efficiency of the techniques and the novelty of new designs. Even-parity
functions are well known to be difficult to find by random search when the

� 4 Ž .primitive operators are chosen from the set AND,NAND,OR,NOR Koza, 1992 .
Consequently they have been used extensively to test the effectiveness of various

Ž . Ž .algorithms Poli et al., 1999b . Arithmetic functions addition and multiplication
are extremely good candidates to be used in the study of digital evolution for two

Ž . Ž .main reasons: a they are modular in construction, and b there are well
established conventional methods of building them. They are also fundamental
building blocks of many digital devices. They afford a study of a fundamental
question addressed in this paper:

Can we by evolving a series of subsystems of increasing size, extract the general
principle and hence discover new principles?
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This leads on to the further question: In which type of design problems is it most
likely that new principles might be discovered? Clearly since the search space of all
possible designs is enormously enlarged compared with traditional rule-based
methods one requires an extremely fast fitness function. It should be anticipated
that tens of millions, even billions, of genotypes will have to be examined. Digital
circuit design is an ideal candidate for novel principle extraction. The fitness
function merely uses the bitwise operations that CPUs were designed for. For
example, on a 450MHz PC one can evaluate 50,000 designs for a three-bit

Ž .multiplier per second in a 1 = 30 geometry .
In this paper it is argued that the fundamental question can be answered in the

affirmative so that in the particular instance of designing arithmetic circuits new
principles of scalable design can be discovered. A simple example of how such
discoverable and scalable principles can be extracted is given in Section 4 where it
is seen that the principle of the ripple-carry adder follows as a consequence of
examining the best evolved designs for the one and two-bit adders with carry. The
processes by which new principles might be discovered is shown in Figure 2 which
illustrates the cycle of evolutionary discovery and forms a diagrammatic represen-
tation of the concept of this work that is covered in this paper, Part I, and its

Ž .sequel Part II Miller et al., 2000b . In Section3 the way in which a digital circuit is
encoded into a genotype and the characteristics of the evolutionary algorithm are
given. This produces, given a sufficient number of generations, designs for fully
functional circuits. This evolved data is discussed in Section 4. In the sequel paper,

Žthe techniques of landscape analysis developed in Vassilev, 1997a; Vassilev et al.,
.1999f are discussed, and using this, the principles by which an effective evolution-

ary search may be conducted are studied. The process of discerning design rules
Žand principles from the evolved data can be seen as a form of data mining Job

.et al., 1999 . This can make recommendations about useful components and
substructures which feed back into the evolutionary algorithm and so improve the
evolvability of the circuits in question and enhance our ability to understand the
new designs. This is also examined in the succeeding part. The paper begins with a

Ž .discussion of conventional methods of digital design Section 2 and closes with
Ž .conclusions and suggestions for future work Section 5 , some of which are

discussed in Part II.

Figure 2. The principle extraction loop.
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2. Conventional logic synthesis

2.1. Definitions and preliminaries

The symbols for logical operators used in this paper are given below:

y indicates the NOT operator
? indicates the AND operator
q indicates the inclusive-OR operator

Ž .[ indicates the exclusive-OR operator XOR

The term literal refers to a Boolean variable or its complement. When two literals
Ž .are next to one another the AND operator is assumed e.g., ab ' a ? b ' a AND b .

A product term refers to number of literals connected by the AND operator. A
minterm is a product involving all input variables where the output of a function is
one. It is denoted by a decimal equivalent with inverted variables being repre-

Ž .sented by 0 e.g., for a three variable function a ? b ? c is represented by 5 . A prime
implicant is a product term that cannot be combined with any other product term
to generate a term with fewer literals than the original term. A prime implicant is
called essential when it implies at least one minterm that is not implied by any
other prime implicant of the function. A don’t care is a minterm for which the

Ž .function output is unspecified either one or zero . A function with minterms mi
� 4and unspecified terms d is written Ý m q d .i i i i

De Morgan’s theorems are useful for converting NAND gates in expressions to OR
gates, and also NOR gates to AND. The theorems are given below:

Theorem 2.1 For Boolean ¨ariables a and b

w xa ? b s a q b 1

w xa q b s a ? b 2

2.2. Specification of logic functions

It is beyond the scope of this paper to give a complete description of Boolean
Ž .algebra Devadas et al., 1994; Lala, 1996 . Combinational logic functions are

Žcommonly specified by pla files pla stands for programmable logic array}pro-
.nounced pee-ell-ay . A pla file has the format shown in Table 1.

This is interpreted in the following way. The four input logic function with two
outputs has four product terms. Suppose that the inputs are labeled from a to d
going from left to right and the outputs are labeled y and z. The first product term
is a ? c and y is 1 in this case and one doesn’t care about the value of z. Thus one

Žcan interpret the dashes in the input field as missing variables b and d in this
.case and dashes in the output field imply that the output variable is a don’t care.
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Table 1. An example pla file for a four
variable function

.i4
.o 2
. p 4
0-0- 1-
0-1- -1
1-0- 10
1111 01
s.e

Note that the AND operator is assumed between literals in the input field and the
OR operator is assumed between product terms. Thus the outputs y and z can be
written

w x� 4y s a ? c q a ? c q a ? c 3

w x� 4z s a ? c q a ? b ? c ? d q a ? c . 4

Ž .The pla file is an abbreviated truth table where all inputs are specified and
doesn’t list products for which all the outputs are zero.

2.3. Canonical and two-le¨el Boolean functions

Logic functions can be represented in a variety of different ways. First one can use
Ža two-le¨el representation in which literals are combined with a single operator in

w x w x .Eqs. 3 and 4 above this is the AND operator and then these terms are combined
Ž .with a second operator the OR operator above . When a logic function is expressed

in terms of product terms which involve all input variables and all true output
products are present the expression is referred to as a canonical Boolean expres-
sion. Usually the goal of logic synthesis is to represent a logic function in the
simplest way by reducing the number of product terms and literals.

2.4. Karnaugh maps, the Quine-McCluskey algorithm and ESPRESSO

The Karnaugh map of a Boolean function of four variables

w xf s 1, 4, 5, 10, 12, 13, 14, 15 5Ž .Ý

Ž .is depicted in Figure 3 symbol a is most significant . The Karnaugh map is a way of
Žrepresenting a Boolean function so that logically adjacent terms with Hamming

. Ždistance 1 are physically adjacent the map is cyclic so that the horizontal and
.vertical boundaries are taken to be logically adjacent . Minterms are entered on

the map as ones. The loops around the groups of ones in the map represent a
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Ž .Figure 3. The Karnaugh map of function f s Ý 1, 4, 5, 10, 12, 13, 14, 15 .

possible simplification by applying the rules of Boolean algebra. The final result of
employing a Karnaugh map is to reduce a function to a sum of its essential prime
implicants. It can be shown that f may be simplified to

w xf a, b , c, d s a ? c ? d q b ? c q a ? b q a ? c ? d. 6Ž .

Note that this gives an expression which is the sum of products. If zeros are marked
on the Karnaugh map instead of ones and the same operations applied one obtains
a product-of-sums representation of a logic function. This is because one obtains a
sum-of-products for the complement of the original function which on inversion
and applying De Morgan’s theorems become a product-of-sums.

Ž .The Quine-McCluskey algorithm Quine, 1952; McCluskey, 1956 is an exhaus-
tive search method which essentially formalizes the operations used for simplifying
a function in a Karnaugh map. It is only practical for functions with small numbers
of input variables. An effective and widely used heuristic method called ESPRESSO
Ž .Brayton et al., 1984 is used to minimize two-level AND-OR representations of
Boolean functions. There are some functions that have a sum-of-product represen-
tation that grow exponentially with the number of input variables. The Achilles

Ž .Heel function Brayton et al., 1984 , the parity functions and the n-bit multiplier
are examples of this.

2.5. NAND-NAND and NOR-NOR representations

Any Boolean logic function can be built entirely using NAND gates or NOR gates.
The method of obtaining a minimized two-level representation of a logic function
with NAND gates is the following:

1. Take the complement of the minimized Boolean sum-of-products.
2. Take the complement of the complemented expression. Eliminate the OR

operator from the resulting expression by applying De Morgan’s theorem.
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The steps required to obtain a representation of a logic function using NOR gates is
as follows:

1. Derive the product-of-sums expression of the function.
2. Take the complement of the product of sums expression and eliminate AND

operators by applying De Morgan’s theorems.

2.6. Multilë el Boolean functions

A multilevel representation of a logic function allows the use of factoring and
decomposition into subfunctions. For example

f s a ? b ? e ? g q a ? b ? f ? g q a ? b ? e ? g q a ? c ? e ? g q a ? c ? f ? g

w xq a ? c ? e ? g q d ? e ? g q d ? f ? g q d ? e ? g 7

can be written

w xf s a ? b q c q d ? e ? g q g ? f q e . 8Ž . Ž .Ž . Ž .

The starting point for multilevel minimization is the minimum two-level canoni-
cal form. Sophisticated heuristic minimization algorithms have been written which

Ž w xtry to reduce the literal counts in Boolean multilevel expressions Eq. 7 has 33
w x . Žliterals, while Eq. 8 has 9 Brayton et al., 1987; Brayton et al., 1990; Kunz and

.Menon 1994 .

2.7. Decision diagrams

Classical representations of Boolean functions like truth tables, canonical sum-of-
products, Karnaugh maps are impractical as their size is exponentially dependent
on the number of inputs. Even representations with prime essential implicants are
problematic as simple operations like complementation may produce representa-
tions of exponential size. In addition these representations have different equiva-
lent forms making it difficult to check the equivalence of two functions. Binary

Ž . Ž .decision diagrams BDD were proposed by Lee 1959 and developed by Akers
Ž . Ž .1978 but they are not necessarily canonical in form. However, Bryant 1986
showed that reduced-ordered binary decision diagrams do have a canonical form. A
BDD is a rooted acyclic, directed graph with vertex set V containing two types of
vertices. A nonterminal vertex ¨ has the following attributes: a decision i s

Ž . � 4 Ž . Ž .index ¨ g 1, . . . , n and two children low ¨ , high ¨ g V. A terminal vertex ¨
Ž . � 4has as attribute ¨alue ¨ g 0, 1 . A BDD with root vertex ¨ denotes a function f¨
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defined recursively as:

¡0, if ¨ is terminal and ¨alue ¨ / 1Ž .
1, if ¨ is terminal and ¨alue ¨ s 1Ž .~ w xf x , . . . , x s 9Ž .¨ 1 n x f x , . . . , x q x f x , . . . , x ,Ž . Ž .i l owŽ¨ . 1 n i hi g hŽ¨ . 1 n¢

otherwise,

where x is called the decision variable for vertex ¨ . A BDD is ordered if for anyi
Ž . Ž . Ž .nonterminal vertex ¨ for which low ¨ and high ¨ are nonterminal index ¨ -

Ž Ž .. Ž . Ž Ž ..index low ¨ and index ¨ - index high ¨ . The OBDD for the even 4-parity
function is shown in Figure 4. The even n-parity function requires 2n y 1 vertices
in an OBDD representation but 2 ny1 in the minimum sum-of-products representa-

Ž .tion. A reduced ordered binary decision diagram ROBDD is defined as a BDD in
Ž . Ž .which there is no vertex with low ¨ s high ¨ nor does it contain distinct vertices

Ž .¨ and w such that the subgraphs rooted by ¨ and w are isomorphic equivalent .
One of the problems with BDDs is that their size is very strongly dependent on the
variable ordering and there have been many heuristics devised to find a good

Žordering Brace et al., 1990; Friedman and Supowit, 1990; Fujita and Matsunaga,
.1993 . Indeed evolutionary algorithms have also been applied to finding a good

Ž .ordering Drechsler et al., 1996 . There have been many other types of decision
diagrams proposed which can provide smaller more efficient representations of

Ž .Boolean functions. The ordered Kronecker functional decision diagrams OKFDD
are canonical and can provide a more efficient representation in which XOR and OR

Ž .gates are used Drechsler et al., 1994b . There are many other decision diagram
Ž . Ž .methods Jain et al., 1992; Shen et al., 1995 these are not canonical . There are

certain functions whose canonical OBDDs have provably exponential numbers of
vertices as functions of the number of input variables. The n-bit multiplier is an

Ž . Ž .example of this Bryant, 1991 and also the Devadas function Devadas, 1993 .

Figure 4. The ordered binary decision diagram for the even four-parity function.
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2.8. Reed-Muller and exclusï e-OR logic

It is well known that many Boolean functions which can be easily implemented
using exclusive-OR gates are very inefficiently represented in canonical Boolean
logic. The most extreme case of this being the n-parity functions which can be
realized with n y 1 XOR gates only but which require 2 ny1 y 1 OR gates and a
large number of AND gates. When a Boolean logic function is expressed using XOR

Ž .gates and uncomplemented variables it is called a Reed-Muller RM canonical
Ž .form Green, 1986 . If any particular variable is allowed to be complemented or

uncomplemented throughout the expansion then the representation is known as a
fixed polarity RM form. Finding a good polarity is a difficult problem and evolution-

Ž .ary algorithms have been used Miller et al., 1994; Drechsler et al., 1994a . Work
has been done on trying to minimize the less restricted XOR sum-of-products

Ž .representations Sasao, 1993; Thomson and Miller, 1996 .

2.9. Exploring the space of all representations

In Section 1 it was seen how the use of an evolutionary algorithm combined with
assemble-and-test could be used to explore over a much larger area of design space
than that possible using a top-down rule based design algorithm. Figure 5 shows a
particular case of this for the problem of finding efficient representations of
Boolean functions and it illustrates one of the fundamental concepts of this paper.

In conventional logic design one begins with a precise specification in the form
of a truth table, pla file, binary decision diagram, symbolic expression, etc. The

Figure 5. How ‘‘assemble-and-test’’ reaches the unknown regions of the space of all representations.



PRINCIPLES OF EVOLUTIONARY DESIGN 17

expression is manipulated by applying canonical Boolean rules or Reed-Muller
algebraic rules. One never escapes from the space of logically correct representa-
tions. The methods though powerful in that they can handle large numbers of input
variables are not adaptable to new logical building blocks and require a great deal
of analytical work to produce small optimizations in the representation. Assem-
bling a function from a number of component parts begins in the space of all
representations and maps it into the space of all the truth tables with m input

Ž .variables m F n . The evolutionary algorithm then gradually pulls the specifica-
Ž .tion of the circuit towards the target truth table shown as a small dark ellipse .

Thus the algorithm works in a much larger space of functions many of which do
not represent the desired function. It is one of the contentions of this paper that
this is the only way one can discover radically new designs.

3. Digital circuit evolution

3.1. Encoding a digital circuit as an indexed graph

The encoding of a digital combinational circuit into a genotype which is presented
Žin this paper is a development and simplification of earlier models Miller et al.,

.1997; Miller and Thomson, 1998b; Miller and Thomson, 1998c . It treats a digital
logic circuit as a particular case of a more general graph based computational

Ž . Ž .model called Cartesian Genetic Programming CGP Miller, 1999 . CGP has some
similarities with other graph based forms of genetic programming, in particular,

Ž . Ž .Parallel Distributed GP PDGP proposed by Poli 1997 and Parallel Algorithm
Ž . Ž .Discovery and Orchestration PADO Teller and Veloso, 1995 and represents a

Ž Ž ..dataflow graph see page 258 Banzhaf et al., 1998 .
In this paper a digital electronic circuit is seen as a particular instance of a

program in which functional units or cells are connected together to perform some
computational task on binary data. In CGP a program is seen as a rectangular
array of nodes. The nodes represent any operation on the data seen at its inputs.

ŽEach node may implement any convenient programming construct e.g., if,
.switch, OR, ), etc. . All the inputs whether primary data, node inputs, node

outputs, and program outputs are sequentially indexed by integers. The functions
of the nodes are also separately sequentially indexed. The genotype is a linear
string of these integers and is characterized by three parameters: the number of
columns, the number of rows, and le¨els-back. The first two are merely the
dimensions of the rectangular array and the last is a parameter which controls the
internal connectivity. It determines how many columns of cells to the left of a
particular cell may have their outputs connected to the inputs of that cell. The
parameter is also applied to the program outputs. The cells and outputs are
maximally connectable when the number of rows is one and le¨els-back is equal to
the number of columns. If however number of rows is one and le¨els-back is one
then each cell must be connected to its immediate neighbor on the left. Cells
within any particular column cannot be connected together. In this paper a
particular form of CGP is adopted in which all cells are assumed to have three
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inputs and one output and all cell connections are feed-forward. In general CGP
the cells may have multiple inputs and outputs and the numbers of these would be
encoded into the genotype for the cell. Also in general primary outputs could be
allowed to be treated as clocked inputs thus allowing the CGP programs to possess
internal states. The genotype and the mapping process of genotype to phenotype
are illustrated in Figure 6.

The n primary circuit inputs X , X , . . . , X are allowed to be connected to theI 1 2 nI

input of any cell or any of the n primary circuit outputs Y , Y , . . . , Y . The cellsO 1 2 nO

c may implement any of the binary functions listed in Table 2. Functions 16 to 19i j
Ž .are all binary multiplexers with various inputs inverted. The multiplexer MUX

Ž .implements a simple IF- THEN statement i.e., IF c s 0 THEN a ELSE b . It is
important to note that one can consider multiplexers to be atomic both formally
and from an implementational point of view. It is atomic in that it is a universal

Ž .logic module Chen and Hurst, 1982 so that it can be used to represent any logic
function. Also some modern FPGAs now use a multiplexer based architecture so
that all two input gates are synthesized with multiplexers.

The genotype which is a list of connections and cell functions is shown in Figure
6b. In general one can think of the connections as addresses in data, thus provided
that the function set is appropriate for a particular data type, the genotype is data
independent. Note that in Table 2 only functions 16 to 19 use all three inputs and
some functions are actually constants with an output independent of the inputs
Ž .letters 0 and 1 . Thus the genotype can contain completely redundant genes. This
type of redundancy is referred to as input redundancy. Cells may also not have their

Ž .Figure 6. The genotype-phenotype mapping: a a n = m geometry of logic cells with n inputs and nI O
Ž .outputs, and b the genotype structure of the array.
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Table 2. Allowed cell functions

Letter Function Letter Function

0 0 10 a [ b
1 1 11 a [ b
2 a 12 a q b
3 b 13 a q b
4 a 14 a q b
5 b 15 a q b
6 a ? b 16 a ? c q b ? c
7 a ? b 17 a ? c q b ? c
8 a ? b 18 a ? c q b ? c
9 a ? b 19 a ? c q b ? c

outputs connected in the operating circuit between the primary inputs and outputs,
Ž .these collections of genes 3 connections, 1 function are also redundant. This is

called cell redundancy. There is yet another form of redundancy called functional
redundancy which is more typical of genetic programming. This is where a number
of cells implement a function which requires less cells. To clarify the interpretation
of the genotype structure depicted in Figure 6 consider the example of a one-bit
adder with carry shown in Figure 7.

Figure 7 shows the genotype and phenotype for a small gate array consisting of
four logic cells. The logic cells in this case have functions XOR, AND, or MUX. The

Žcircuit in question actually arose in an experiment reported in Section 4 Miller
.et al., 1997 and is novel in its own right. A, B, and C represent the primaryin

Ž .inputs. C and S Sum are the output bits of the adder. For example the upperout
Ž .right cell output 5 below has input connections 3, 2, 1. This means that the first

Ž .Figure 7. The genotype-phenotype mapping of evolved one-bit adder with carry: a gate array
Ž .representation, and b genotype representation.
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Ž .input is connected to the output of the cell with output label 3 upper left , the
second input is connected to the primary input C , and the third input isin
connected to primary input B. The function of each cell is expressed as the fourth

Ž .gene associated with each cell shown in bold typeface . The primary outputs of the
gate array are also expressed as connections. For example, C is connected to theout
output of the cell with output label 6. It is important to emphasize that cell outputs
may be re-used and when a program is used to evolve the genotypes the amount of
re-use of subcalculations is determined entirely automatically.

3.2. Calculating the fitness of a genotype

All functions are specified by a truth table. The fitness of a genotype is the number
of correct output bits. Thus for the one-bit adder with carry seen in Figure 7 there
are 8 input cases and 2 outputs, this gives 16 output bits. A fully correct circuit
would have fitness 16. In practice the fitness of a circuit is calculated using 32-bit
arithmetic. Thus the binary data is handled as 32-bit unsigned integers and all the
operations defined in Table 2 are 32-bit operations. A truth table with 5 input

Ž .variables is then represented as a single line Poli, 1999a . For example the truth
table of the two-bit adder with carry is represented as:

Inputs: 4294901760 4278255360 4042322160 3435973836 2863311530
Outputs: 4277723264 3783728760 2573637990.

3.3. The e¨olutionary algorithm

The evolutionary algorithm used to produce all of the evolved circuit designs in this
Ž . Žpaper is a simple form of 1 q l -ES evolutionary strategy Schwefel, 1981; Back et¨

. Ž .al., 1991 , where l is usually about 4. Experiments were reported in Miller, 1999
which indicated the efficiency of this approach. The algorithm is as follows:

Step 1 Randomly initialize a population of genotypes subject to constraints im-
posed by feed-forward nature of circuits and levels-back parameter.

Step 2 Evaluate fitness of genotypes.
Step 3 Copy fittest genotype into new population.
Step 4 Fill remaining places in population by mutated versions of fittest genotype.
Step 5 Replace old population by new and return to step 2 unless stopping cri-

terion reached.

The mutation was defined as a percentage of the genes in a single genotype which
Ž .were to be randomly mutated subject to constraints . It was necessary to adjust the

mutation rate if the genotype length was too small to prevent zero mutation.
Generally speaking a mutation rate which resulted in 2 or 3 genes being changed in
each genotype was found to be suitable.
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Table 3. Computational effort of evolving two-bit multiplier
for different population sizes

Population size Computational effort

2 148808
3 115224
4 81608
5 126015
6 100824
7 100821
8 96032
9 108036

10 108090
12 115248
14 117698
16 120080
18 145854
20 120100
25 180075
30 162180
40 216360
50 225250

A suitable population size was found by experiment using a two-bit multiplier
Ž .circuit see Section 4 . For each population size in the range below, 100 runs of the

evolutionary algorithm were carried out. The experimental parameters were as
follows:

v number of rows}1
v number of columns}10
v levels-back}10
v Ž .mutation rate}8% 3 genes
v number of generations}up to 150,000
v � 4 Ž .gates used} 6, 7, 10 Table 2 .

ŽThe minimum number of evaluations to obtain a 0.99 probability of success fitness
. Ž .equal to 64 was calculated Koza, 1992 and the results obtained are shown in

Table 3.

3.4. Practical aspects of circuit implementation

One of the objectives of this paper is to try to evolve as novel and efficient digital
logic circuits as possible. The table of logic functions Table 2 which has been used
is modeled on the resources that are available on modern FPGA platforms. The
experiments described have assumed that there are no practical constraints im-
posed by wiring. In practice the routing of connections between components is a
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Figure 8. Binary circuit symbols.

significant factor in the successful implementation of a circuit. Other representa-
tions of digital circuits in which the routing is explicitly taken into account have

Ž .been devised Miller and Thomson, 1998b, 1998c . To improve the potential
routability of circuits evolved using the techniques described here one can adjust
the levels-back parameter so that it takes much lower values. The complete
investigation of the influence of this on circuit routability is a subject for further

Ž .work. It was shown elsewhere Miller and Thomson 1998b, 1998c that the
dominant factor in the evolvability of the circuits is the amount of functional
resources made available, however increasing this tends to produce less efficient
circuits. Conventional logic synthesis techniques minimize the symbolic representa-
tion of a circuit and then carry out technology mapping. This is a process of trying
to rewrite the symbolic logic into a form that can be implemented with whatever
gates are available on the chosen platform. To do this efficiently is a nontrivial
exercise. Such a process is unnecessary when one is evolving a circuit using the
gates available on the device.

3.5. Binary circuit symbols

Figure 8 shows the symbols used to represent logic gates in circuit diagrams. Note
that small circles may appear on some of the inputs and outputs of these devices,
this indicates inversion.

4. Evolved data

4.1. Interesting problems

It is clear that the number of input combinations in a truth table grows exponen-
tially with the number of inputs. Thus it is not practical to evolve very large truth

Ž . Žtables c 25 input variables . Conventional logic synthesis techniques see Section
.2 can handle hundreds of input variables. Thus the question arises what is the use

of evolving truth tables by assemble-and-test? The answer is that one should try to
evolve interesting functions. These are useful functions which are one of a series of
increasing scale but similar function. A classic example of this are arithmetic
functions, namely, binary adders and multipliers. If one can evolve a particularly
efficient adder or multiplier one can use this as a building block for adders of any
size. However there is yet another more interesting reason to try to evolve
arithmetic functions. One can try to evolve a series of examples with increasing
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Ž . Ž .Figure 9. One-bit adder with carry: a block diagram, and b conventional circuit diagram.

numbers of inputs and attempt to deduce the general design principle. If this is
possible then one can potentially obtain new designs for arithmetic functions of
any number of input variables. It is precisely these principles that are employed in
the design of large arithmetic circuits. These are interesting problems to contrast
conventional with evolved designs as one can examine the modularity of the
evolved circuits. A number of key questions emerge:

1. Can more efficient designs for arithmetic functions be found by evolution?
2. Can general principles be extracted?
3. How modular are the evolved circuits?

In this section circuits are evolved for one and two-bit adders with carry, and two
and three-bit multipliers. The even four-parity function is also studied as parity
functions have received much attention from the genetic programming community
and it is an interesting function to study as its fitness landscape changes dramati-

Ž .cally with the choice of gates used to build it Miller et al., 2000b .

4.2. One-bit adder with carry

The conventional one-bit adder with carry is shown in block form in Figure 9a It
Ž .adds the three binary inputs to produce a sum bit denoted S and a carry bit. The

most efficient gate-level representation of this is shown in Figure 9b. It uses two
Žhalf adders indicated on the figure as dotted rectangles containing AND and XOR

.gates and an OR gate. Note that the elementary addition is performed with the
XOR gate.

Ž .The one-bit adder with carry can be easily evolved using a 1 q 4 -ES algorithm
Žwith one row and three columns of cells and allowing XOR and MUX gates only 10

. Ž .and 16 in Table 2 . In 100 runs of 10,000 generations maximum with mutation of
2 genes per genotype, 84 runs successfully evolved the function and 16 runs evolved
a circuit with two output bits incorrect. The average number of generations at
which the last improvement occurred was 130 generations. The minimum computa-
tional effort occurred at 5 runs of 201 generations giving a total of 5,025 evalua-
tions for a 0.99 probability of success. The circuit which emerged is seen in Figure
10. This circuit is still generally unfamiliar in the logic design community, however
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Figure 10. Evolved one-bit adder with carry.

certain FPGA manufacturers use this as the basic unit in their adder macros.1

Actually evolving using 1 = 4 geometry also produces an interesting circuit. The
Žsum-bit is implemented as two XOR gates and the carry-bit as two MUX gates Miller

.et al., 1997 .

4.3. Two-bit adder with carry

The conventional two-bit adder with carry is seen in block form in Figure 11. It
carries out the function of adding together all five input bits and giving the
three-bit binary number representing the sum as the output. The lowest two bits
Ž . Ž .S and S are referred to as sum-bits while the highest order bit C is called0 1 out
the carry-bit. The adder is the simplest example of a ripple-carry adder. It is clear
that any size adder can be built out of one-bit adders cascaded in this fashion. This
is an example of a generalizable principle.

Ž .The two-bit adder with carry can be evolved with a 1 q 4 -ES using 1 row and 6
columns of logic cells. 100 runs of 50,000 generations were carried out using XOR

Ž .and MUX gates 10 and 16 in Table 2 with a mutation of 2 genes per genotype. 62
solutions were found which correctly implemented all 96 output bits. 12 circuits
had 4 bits incorrect, 10 had 8 bits incorrect and 16 were evolved with 12 bits
incorrect. The average number of generations taken to reach the last improvement
was 12,581. The problem requires 22 runs of 3,501 generations to produce a 0.99
probability of success giving a computational effort of 385,110. An example of a
6 gate evolved two-bit adder is seen in Figure 12. All solutions found required
6 gates. Careful examination of this circuit and comparison with the evolved

Ž .one-bit adder with carry Figure 10 reveals that it is none other than the
conventional two-bit adder with carry seen in Figure 11. Thus by studying two
evolved solutions, the one-bit adder with carry and the two-bit adder with carry it

Figure 11. Two-bit ripple-carry adder.
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Figure 12. Evolved two-bit adder with carry.

has been possible to rediscover the well known principle of the ripple-carry adder.
Thus in principle we could construct an adder of any size.

4.4. Two-bit multiplier

The two-bit multiplier implements the binary multiplication of two two-bit numbers
to produce a possible four-bit number. This is shown in Figure 13. This can be
implemented in block form by the cellular multiplier shown in Figure 14. The AND
gates carry out elementary one-bit multiplication and two one-bit adders with carry
are required to calculate the three most significant product bits. Since the one-bit
adders have a carry-in of zero the modules can be reduced and the gate-level

Figure 13. Multiplication of two binary numbers.

Figure 14. Two-bit cellular multiplier.
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Ž . Ž .Figure 15. Most efficient a conventional and b evolved two-bit multipliers.

circuit shown in Figure 15a is obtained. In fact one of the AND gates connecting to
output P can be eliminated and thus the final most efficient conventional circuit is3
obtained. It requires 7 two-input gates.

Ž .When the two-bit multiplier is evolved using gates 6 to 15 Table 2 with 100 runs
of 100,000 generations and a geometry 1 = 7, 66 solutions which correctly imple-

Ž .ment all 64 output bits are evolved mutation equal to 2 genes per genotype . 8
solutions had one bit incorrect, 23 two bits, and 3 circuits had 3 bits incorrect. The
average number of generations to the last improvement were 17,269. The minimum

Ž .computational effort was 585,045 9 runs of 13,001 generations . All of the correct
circuits required 7 gates, thus implying that 7 is a theoretical minimum. Some very
interesting and surprising circuits were obtained. One circuit of particular interest
is shown in Figure 15b.The circuit uses only a single XOR gate yet still carries out
two elementary additions. It re-uses subcalculations in a very surprising way. To

Ž . Ž .create the second highest product P it re-uses the lowest product P and to2 0
Ž . Ž .create the highest product bit P it re-uses the second lowest product P . The3 1

whole circuit subdivides into two unconnected parts. The circuit is very elegant but
also very counterintuitive. Comparing it with the conventional two-bit multiplier
caused some consternation! It is clear that it is modeling multiplication in a very
unusual way.

The choice of gates which are used to evolve circuits can have a dramatic effect
on the ease of evolution. The two-bit multiplier was also evolved under the same
conditions as above but with gates 6, 7, and 10. The following results were
obtained. 69 circuits were correct, 5 had one bit incorrect, and 26 had two-bits

Žwrong. The average number of generations to the last improvement was 6,771 a lot
. Žlower than before and the minimum computational effort was 280,035 comprising

.7 runs of 8,001 generations . Once again the circuit was evolved with gates 6, 7, 10,
and 16. This proved to be a very effective choice as 94 correct circuits were

Ž .obtained under the same conditions as above with 6 circuits having one bit wrong.
The average number of generations to the last improvement was 8,863 and the

Žminimum computational effort was 210,015 evaluations 3 runs of 14,001 genera-
.tions . This implies that useful evolution was continuing longer than the previous

case. Finally, an experiment was performed using only gates 16 and 17. This
produced 73 correct circuits, 23 with one bit incorrect and 4 with two bits incorrect.
The average number of generations to the last improvement was 11,646 and the
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Žminimum computational effort was much higher though less than that in the first
. Ž .scenario at 400,040 8 runs of 10,001 generations . Again no correct circuits were

found with less than seven gates.

4.5. Three-bit multiplier

The conventional three-bit multiplier is again modeled using the familiar process
of long multiplication and is built as a cellular array of adders with the 9
elementary products being implemented with AND gates. The most efficient imple-
mentation of this at gate-level is shown in Figure 16. This circuit requires 30
two-input gates and 26 gates with MUX. Once again the familiar half and full adders
are employed and there is little re-use of subcomponents.

Ž .Inspired by the elegant two-bit multiplier solution found earlier Figure 15b the
three-bit multiplier was evolved with gates 6, 7, and 10. 100 runs of 4 million
generations using 1 = 25 geometry with levels-back equal to 25. Three solutions
were found that correctly implemented all 384 output bits. The best result is shown

Ž .in Figure 17. This requires 24 two-input gates 20% better than the conventional .
Once again it is very strange in appearance. The lowest product is re-used twice
and the second highest product is re-used once. The circuit only uses the uncon-

Ž .ventional AND gate with one input inverted gate 7 three times but it appears to
make a big difference. The circuit is considerably more complex than the two-bit
multiplier and it is not possible at this time to see any kind of generalization.

Ž .When 100 runs of 10 million generations of a 1 q 3 -ES was used with a
geometry of 1 = 21 and levels-back equal to 21, 3 perfect solutions were found
Ž .mutation was again 2 genes per genotype . The gates allowed were 6, 10, 16, 17.

Ž .Figure 16. Most efficient conventional three-bit multiplier 30 two-input gates, 26 gates with MUX .
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Ž .Figure 17. Evolved three-bit multiplier 24 two-input gates .

Ž .Figure 18. Evolved three-bit multiplier 21 gates s 14 two-input gates q 7 MUX .

The average number of generations to the last improvement was 3,189,016. One of
the circuits obtained is shown in Figure 18. This uses only 21 gates. This is again

Ž20% more efficient in gate usage than the best conventional alternative see Figure
.16 but is 30% better than the conventional if MUX gates are counted as elemen-

tary. The circuit is very difficult to understand and it is not clear whether it consists
of identifiable submodules which are useful in building larger systems. It departs
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Ž . Ž .Figure 19. Two representations of the four-bit parity function with a gate XNOR and b gates AND,
OR, and NOR.

radically from conventional principles in that it does not directly synthesize the
nine elementary products of the inputs.

4.6. E¨en four-parity

It is well known that even-parity functions are extremely difficult to evolve when
using the logic gates AND, NAND, OR, NOR. This is because even-parity functions are
most easily implemented using XNOR gates and it is difficult to synthesize XNOR
function using this set. The most efficient implementation of even four-parity
requires 3 XNOR gates. This is shown in Figure 19a. When one tries to automati-
cally synthesize this circuit using only XNOR gates, it appears that random search is
the most efficient method. This is evident on considering that there are only two

Ž .possible fitness values 16 or 8 correct output bits . Thus we can see that the search
is radically affected by the choice of gates.

Experiments were carried out to see how easily this representation could be
Ž .evolved using AND, NAND, OR, NOR. 100 runs of 1 million generations of 1 q 4 -ES

Ž .were carried out mutation equal to 2 genes per genotype . A geometry of 1 = 9
was chosen with levels-back equal to 9. 15 solutions were found which had a
perfect fitness of 16, 48 were found with fitness 14, and 37 with fitness 13. All of
the perfect solutions were of the form shown in Figure 19b.

5. Conclusions

It has been argued in this paper that one can explore a much larger space of
possible designs by employing an evolutionary algorithm together with a process
of assembling and testing the designs. This has been demonstrated in the case of
digital circuit design and in particular, arithmetic circuits. These circuits are
modular in construction so that much larger systems can be built from smaller
building blocks. This paper has examined some fundamental questions concerning
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the role of evolutionary algorithms as a novel methodology for design. It has tried
to indicate a possible answer to the question: Can new principles of design be
disco¨ered using artificial e¨olution? The paper has shown how the principle of ripple
carry in binary adder circuits can be deduced by studying evolved circuits for one
and two-bit adders. Currently the goal of discovery of a new and efficient general
principle for the construction of binary multipliers remains out of reach. However

Ždesigns for three-bit multipliers have been evolved that are 20% more efficient in
.gate usage than the best conventional alternatives. Unfortunately in spite of the

extraordinary speed of fitness evaluation it is time consuming to evolve correct
three-bit multiplier circuits. One needs to examine about 50 million genotypes to
achieve a high probability of success. Thus it becomes essential to understand more
about the nature of the fitness landscapes. This work is undertaken in a sequel

Ž .paper, Part II Miller et al., 2000b .
Even with a computer that could deliver large numbers of correct designs one

would have a problem of data mining the evolved circuits to extract principles. It is
not feasible for an expert to study and compare hundreds of unconventional

Ždesigns. An automated approach is essential. This work was begun in Job et al.,
.1999 and a more detailed presentation and latest results appear in Part II in the

next issue of this journal.
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