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Abstract. This paper presents a method for co-evolving neuro-inspired
developmental programs for playing checkers. Each player’s program is
represented by seven chromosomes encoding digital circuits, using a form
of genetic programming, called Cartesian Genetic Programming (CGP).
The neural network that occurs by running the genetic programs has a
highly dynamic morphology in which neurons grow, and die, and neurite
branches together with synaptic connections form and change in response
to situations encountered on the checkers board. The results show that,
after a number of generations, by playing each other the agents play
much better than those from earlier generations. Such learning abilities
are encoded at a genetic level rather than at the phenotype level of neural
connections.
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1 Introduction

Although the history of research in computers playing games is full of highly
effective methods (e.g. minimax, board evaluation function), it is arguable that
human beings use such methods. Typically they consider relatively few poten-
tial board positions and evaluate the favourability of these boards in a highly
intuitive and heuristic manner. They usually learn during a game, indeed this
is how, generally humans learn to be good at any game. So the question arises:
How is this possible? In our work we are interested in how an ability to learn
can arise and be encoded in a genotype that when erecuted gives rise to a neural
network that can play a game well. The genotype we evolve is a set of com-
putational functions that represent various aspects of biological neurons. Each
agent (player) has a genotype that grows a computational neural structure and
through co-evolution, the developed structure allows the players to play checkers
increasingly well. Our method employs very few, if any, of the traditional notions
that are used in the field of Artificial Neural Networks. Instead, all aspects of
neural functions are obtained ab initio through evolution of the genotype.

The computational network possessed by each agent is based on a compart-
mentalised model of neural functions inspired by neuroscience[2]. In the model we
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have idealised seven neural functions which we have encoded as chromosomes (as
explained later). These represent various aspects of the neuron: soma, dendrites
and axon branches, and synaptic connections. The collection of chromosomes
(forming the genotype) is encoded and evolved using a well known GP technique,
Cartesian Genetic Programming (CGP) [5,4]. The neurons are placed in a two
dimensional grid. Neurite branches are allowed to grow and shrink, and com-
municate with each other via synapses. Dendrites [6], synaptic dynamics [1] and
synaptic communication have been included to enhance the capabilities of the
computational network. The network we describe has the potential virtue that
it is autonomous, in the sense that when the compartmentalised chromosomal
programs are run, a network of neurons, neurites and synapses grows in response
to its own internal dynamics and the agent’s environmental experiences. Section
2 gives an overview of Cartesian Genetic Programming. Section 3 describes the
structure and operation of our computational network. Section 4 describes our
results and analysis and section 5 provides some concluding remarks.

2 Cartesian Genetic Programming (CGP)

CGP represents programs by directed acyclic graphs [5,4]. The number of rows
is chosen to be one, so that an arbitrary directed graph may be evolved. The
genotype is a fixed length list of integers, which encode the function of nodes
and the connections of the directed graph. The nodes can take their inputs from
either the output of any previous node or from a program input (terminal).
The phenotype is obtained by following the connected nodes from the program
outputs to the inputs. The CGP function nodes we have used are variants of
2 to 1 multiplexers [3] in which data inputs are either inverted or not. The
multiplexers require four genes each to describe which type of multiplexer and
its connections. Currently in our model all multiplexers operate in a bitwise
fashion on 32-bit data.

The data operations on genotypes are of two types: scalar processing or vector
processing. In the former, the inputs and outputs are 32-bit integers while in
the latter inputs required by the chromosome are arranged in the form of an
array, which is then divided into 10 CGP input vectors. If the total number of
inputs can’t be divided into ten equal parts, then they are padded with zeros.
This allows us to process an arbitrary number of inputs by the CGP circuit
chromosome simply by clocking through the elements of the vectors.

The evolutionary strategy utilized is of the form 1 4+ A, with A set to 4, i.e.
one parent with 4 offspring (population size 5). The parent, or elite, is preserved
unaltered, whilst the offspring are generated by mutation of the parent. The best
chromosome is always promoted to the next generation, however, it is important
to note that if two or more chromosomes achieve the highest fitness then the
newest (genetically) is always chosen [3].
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3 The CGP Computational Network (CGPCN)

This section describes the structure of the CGPCN, along with the rules, and
evolutionary strategy used to evolve the system.
The CGPCN network has two main aspects:

— Neurons with dendrites, dendrite branches, and an axon with axon branches.

— A genotype of seven chromosomes representing the genetic code of each
neuron (each represented as a digital circuit). It is the genotypes which grow
a mature network from the initial randomly generated network.

The CGPCN is organized in such a way that neurons are placed randomly
in a two dimensional grid (the CGPCN grid) so that they are only aware of
their spatial neighbours (as shown in figure 1). The initial number of neurons
is specified by the user. Initially, each neuron is allocated a random number
of dendrites, and dendrite branches, one axon and a random number of axon
branches. Neurons receive information through dendrite branches, and trans-
fer information through axon branches to neighbouring neurons. Branches may
grow or shrink and thus move from one CGPCN grid point to another. They
can produce new branches, and can disappear. Neurons may produce new daugh-
ter neurons, or may die. Axon branches transfer information only to dendrite
branches in their proximity. Initially all neuro-components are assigned random
values of potentials, resistances, statefactors and weights.
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Fig. 1. A schematic illustration of a 3x4 CGPCN grid. The grid contains seven neurons,
each neuron has a number of dendrites with dendrite branches, and an axon with axon
branches. Inputs are applied in the grid using input axons. Outputs are taken through
output dendrite branches. Note that the system does not distinguish relative locations
within each grid point, the fine detail is included for clarity of illustration only.

Health, Resistance, Weight and Statefactor

Four variables are incorporated into the CGPCN, representing either fun-
damental properties of the neurons (health, resistance, weight) or as an aid to
computational efficiency (statefactor). The values of these variables are adjusted
by the CGP programs. The health variable is used to govern replication and/or
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death of dendrites and connections. The resistance variable controls growth
and/or shrinkage of dendrites and axons. The weight is used in calculating the
potentials in the network. Each soma has only two variables: health and weight.
The statefactor is used as a parameter to reduce computational burden, by keep-
ing some of the neurons and branches inactive for a number of cycles. Only when
the statefactor is zero the neurons and branches are considered to be active and
their corresponding program is run. The value of the statefactor is affected indi-
rectly by CGP programs. The bio-inspiration for the statefactor is the fact that
not all neurons and/or dendrites branches in the brain are actively involved in
each process.

3.1 Inputs, Outputs and Information Processing in the Network

The external inputs (encoding a simulated potential) are applied to the CG-
PCN using input axo-synapse branches. These are distributed in the network in
a similar way to the axon branches of neurons. They use axo-synapse electri-
cal chromosome (explained later) to transfer signal to the neubouring dendrite
branches. Similarly we have output dendrite branches. These branches are up-
dated by the axo-synaptic chromosomes of neurons in the same way as other
dendrite branches and, after every five cycles the potentials produced are aver-
aged and this value is used as the external output.

Information processing in the network starts by selecting the list of active
neurons in the network and processing them in a random sequence using the
circuit shown in figure 2. The processing of neural components is carried out
in time-slices so as to emulate parallel processing. Each neuron take the signal
from the dendrites by running the electrical processing in dendrites. The signals
from dendrites are averaged and applied to the soma program along with the
soma potential (see Fig 2). The soma program is run to get the final value of
soma potential, which decides whether a neuron should fire an action potential
or not. If soma fires, an action potential is transferred to other neurons through
axosynaptic branches. The same process is repeated in all neurons. After each
cycle of neural network the potential of the soma and the branches are reduced
by 10%. The state factor of soma and branches is also reduced by one unit after
every cycle. This makes inactive branches and neurons move gradually towards
activity. After a few cycles of network (typically 5), the Health and Weights
of neurons and branches are also reduced by 10%, to facilitate the removal of
unimportant neurons and branches. Description of the seven chromosomes is
given in the next subsection.

3.2 CGP Model of Neuron

In our model neural functionality is divided into three major categories: electri-
cal processing, life cycle and weight processing. These categories are described
in detail below.
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Fig. 2. Electrical processing in neuron at different stages, from left to right branch
potentials are processed by DECGP, then averaged at each dendrite, and soma, which
processes it further using the Soma-ECGP giving a final soma potential. This is fed in
to a comparator which decides whether to fire an action potential. This is transferred
using the AS-ECGP

Electrical Processing

This part is responsible for signal processing inside neurons and communi-
cation between neurons. It consists of dendrite branch, soma, and axo-synaptic
branch electrical chromosomes. The way they process electrical signal and trans-
fer to other neurons is shown in Figure 2.

Dendrite Electrical CGP (DECGP) The DECGP vector chromosome
handles the interaction between potentials of dendrite branches of a dendrite.
The input consists of potentials of all the active branches connected to the den-
drite and the soma potential. Since in practice there are many dendrite branch
potentials and one soma potential, we increase the importance of the soma po-
tential by creating multiple entries (equal to number of active dendrite branches)
of it (in the input vector) before applying it to the DECGP, which produces the
new values of the dendrite branch potentials as output. The potential of each
branch is processed by adding weighted values of Resistance, Health, and Weight
of the branch. The Statefactor is decreased if the update in potential is large
and vice versa. If any of the branches are active (has its statefactor equal to
zero), its life cycle program is run, otherwise it continues processing the other
dendrites.

Soma Electrical CGP (Soma-ECGP) The Soma-ECGP scalar chromo-
some determines the final value of soma potential after receiving signals from
all the dendrites. The potentials of all dendrites are averaged, which in turn are
the average of potentials of active branches attached to them (figure 2). This
average potential and the soma potential is applied to the Soma-ECGP. It up-
dates the value of the soma potential, which is further processed with a weighted
summation of Health and Weight of the soma. The processed potential of the
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soma is then compared with the threshold potential of the soma (see Figure 2),
and a decision is made whether to fire an action potential or not. If it fires, it is
kept inactive (refractory period) for a few cycles by changing its statefactor, the
soma life cycle chromosome is run, and the firing potential is sent to the other
neurons by running the Axo-Synapse Electrical CGP. The threshold potential of
the soma is adjusted to a new value (maximum) if the soma fires.

Axo-Synaptic Electrical CGP (AS-ECGP) The potential from the soma
is transferred to other neurons through axon branches. Both the axon and the
synapse are considered as a single entity with combined properties. Figure 2
shows the inputs and outputs to the AS-ECGP vector chromosome. As men-
tioned before, the soma potential is biased (by introducing multiple entries of
soma potential to increase its impact). AS-ECGP updates neighbouring dendrite
branch potentials and the axo-synaptic potential. The axo-synaptic potential is
then processed as a weighted summation of Health, Weight and Resistance of
the axon branch. The statefactor of the axosynaptic branch is also updated. If
the axo-synaptic branch is active its life cycle program is executed.

Weight Processing

The Weight processing CGP vector chromosome is responsible for updating
the Weights of branches. The Weights of axon and dendrite branches affects
their capability to modulate and transfer the information (signal) efficiently.
They affect almost all the neural processes either by virtue of being an input to
a chromosomal program or as a factor in post processing of signals. The CGP
program encoded in this chromosome takes as input the Weights of the axo-
synapse and the neighbouring (Same CGPCN grid square) dendrite branches
and produces their updated values as output. The processed axo-synaptic po-
tential(explained above) is assigned to the dendrite branch having the largest
updated Weight.

Life Cycle of Neuron

This part is responsible for development of CGPCN. It consists of three scalar
life cycle chromosomes.

Life Cycle of Dendrite and Axo-Synaptic Branches These two chro-
mosome update Resistance and Health of the branch. Change in Resistance of
a neurite branch is used to decide whether it will grow, shrink, or stay at its
current location. If the change in Resistance during the process is above certain
threshold the branch is allowed to migrate to a different neighbouring location at
random. The updated value of neurite branch Health decides whether to produce
offspring, to die, or remain as it was with an updated Health value. If the up-
dated Health is above a certain threshold it is allowed to produce offspring and
if below certain threshold, it is removed from the neurite. Producing offspring
results in a new branch at the same CGPCN grid point connected to the same
neurite (axon or dendrite).

Life Cycle of Soma This scalar chromosome produces updated values of
Health and Weight of the soma as output. The updated value of the soma Health
decides whether the soma should produce offspring, should die or continue as
it is. If the updated Health is above certain threshold it is allowed to produce
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offspring and if below a certain threshold it is removed from the network along
with its neurites. If it produces offspring, then a new neuron is introduced into
the network with a random number of neurites at a different random location.

4 The Game: Co-evolution of two agents playing
Checkers

Each agent is provided with a CGPCN, and plays checkers against the other.
Each of the five first agent population members are tested against the best
performing second agent genotype from the previous generation [7] and vice
versa. The initial random network is the same for both the first and second
agent. Thus any learning behaviour that exists in an agent is obtained through
the interaction and repeated running of the seven chromosomes in the game
scenario.

When the experiment starts, the agent playing black takes input from the
board. This input is applied to its CGPCN through input axosynapses. The CG-
PCN network is then run for five cycles. During this process it updates the poten-
tials of the output dendrite branches acting as the output of the network. These
updated potentials are averaged, and used to decide the direction of movement
for the corresponding piece. Each piece is allocated a output dendrite branch in
the CGPCN (see later).

The game is stopped if either the CGPCN of an agent or its opponent dies
(i.e. all its neurons or neurites dies), or if all its or opponent players are taken,
or if the agent or its opponent can not move anymore, or if the allotted number
of moves allowed for the game have been taken.

CGP Computational Network (CGPCN) Setup

The CGPCN is arranged in the following manner for this experiment. Each
player CGPCN has neurons and branches located in a 4x4 grid. Initial number of
neurons is 10. Maximum number of dendrites is 5. Maximum number of dendrite
and axon branches is 200. Maximum branch statefactor is 7. Maximum soma
statefactor is 3. Mutation rate is 5%. Maximum number of nodes per chromosome
is 200. Maximum number of moves is 20 for each player.

Fitness Calculation

Both the agents are allowed to play a limited number of moves and the fitness
of the agents is accumulated at the end this period using the following equation:

Fitness = A + 200Nk + 100Ny — 200Nox — 100Noar + Navov, Where N
represents the number of kings, and Ny, represents number of men of the current
player. Nog and Npojs represent the number of kings and men of the opposing
player. N0y represents the total number of moves played. A is 1000 for a win,
and zero for a draw. If the maximum number of moves is reached before either
of the agents win the game, then A =0, and the number of pieces and type of
pieces decide the fitness value of the agent.

Inputs and outputs of the System

Input is in the form of board values, which is an array of 32 elements, with
each representing a playable board square. Each of the 32 inputs represents one
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of the following five different values depending on what is on the square of the
board(represented by I). The values taken by I are as follows: if empty I=0, if king
[=Maximum value(M) 232 — 1, if piece I=(3/4)M, if opposing piece I=(1/2)M,
and finally if opposing king, I=(1/4)M. The board inputs are applied in pairs
to all the sixteen locations in the 4x4 CGPCN grid (i.e. two input axo-synapse
branches in every grid square).

Output is in two forms, one of the outputs is used to select the piece to move
and second is used to decide where that piece should move. Each piece on the
board has a output dendrite branch in the CGPCN. All pieces are assigned a
unique 1D, representing the CGPCN grid square where its branch is located.
Each of these branches has a potential, which is updated during CGPCN pro-
cessing. The values of potentials determine the possibility of a piece to move,
the piece that has the highest potential will be the one that is moved, however if
any pieces are in a position to jump then the piece with the highest potential of
those will move. Note that if the piece is a king and can jump then, according to
the rules of checkers, this takes priority. Once again if two pieces are kings and
each could jump the king with the highest potential makes the jumping move.
In addition, there are also five output dendrite branches distributed at random
locations in the CGPCN grid. The average value of these branch potentials de-
termine the direction of movement for the piece. Whenever a piece is removed
its dendrite branch is removed from the CGPCN grid.
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Fig. 3. Graph showing the fitness variation of a well evolved agent playing checker
against different generations of less evolved player on right hand, and accomulated
fitness variation of high evolved agent on right

Results and Analysis

To learn how to play checkers the agents must start with a few neurons
with a random number of dendrites and branches and build a computational
network that is capable of solving the task while maintaining a stable network
(i.e. not losing all the neurons or branches). Secondly, it must find a way of
processing the environmental signals and differentiating among them. Thirdly, it
must understand the spatial layout of the board (positions of its players). Fourth
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it must develop a memory or knowledge about the meaning of the signals from
the board, and fifth it should develop a memory of previous moves and whether
they were beneficial or deleterious. Also it should understand the benefits of
making a king or jumping over and finally and most importantly it must do
all these things while playing the game. Over the generations the agents learn
from each other about favourable moves, this learning is transferred through the
genes from generation to generation.

To test whether more evolved agents play the game better we tested well
evolved agents against less evolved agents. We found that the well evolved agent
almost always beats the less evolved one, in some of the cases it ends up in a
draw, but in those cases the well evolved agent ends up with more kings and
pieces than the less evolved agent. Figure 3 shows the variation in fitness of a
well evolved agent(from 800 generation) against the fitness of a series of agents
from lower generations. From the figure it is evident that the well evolved agent
playing white always beat the less evolved playing black. From the cumulative
fitness graph(in figure 3 right) of the well evolved agent it is clearly evident that,
initially it beats the less evolved agent by large margin, and as the evolution
progresses, the variation decreases, showing the increase in learning capabilities
of the opposing agents over the course of evolution.

It is instructive to present an annotated game between a highly evolved agent
and a less evolved agent. We have numbered the squares on the board as shown
in the Figure 4. The highly evolved agent is playing white(from generation 1350)
and the less evolved agent(from generation 5) is black.

When the game starts the initial board position is fed into the CGPCN of the
agent playing black, the CGPCN is run for five cycles. After this the CGPCN
makes a decision about which piece to move and where. The sequence of moves
up to move 31 is shown in the Table on the right in figure 4.

Initially both players appear to play sensibly. On move 10, white offers the
black the opportunity of taking a piece in two ways. This is a strange move as it
was avoidable. However after the ensuing series of forced exchanges, white has
its pieces further up the board than black. Move 19 for black is a catastrophic
one, as white is forced to take two pieces and acquires a king. Move 24 for black
is also disasterous as it results in the forced capture by white of two more of its
pieces. It is interesting to observe that both players have learned how to defend
pieces by placing pieces behind them. These occurred at moves, 4, 7, 15 and 16.
In addition move 31 by black is interesting as moving pieces to edges is a safe
thing to do. The game ends up with white winining within 48 moves with one
king and eight pieces left.

5 Conclusion

We have described a neuron-inspired developmental approach to construct a new
kind of computational neural architectures. These control the actions of agents
playing checkers. We found that the neural structures controlling the agents grow
and change in response to their behaviour, interactions with each other and the
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Move Comunent Move Comment
B110- 13 opening W223-19
B311-15 W4 28 - 23| defend
Bas-10 WG 23 - 20
B71-5 |defend but ...| W& 20 - 11 takes
BOG-15 takes W10 22 - 18|  offer

B11 15 - 22 takes W12 26 - 19| takes
B1313- 22 takes W4 27 - 18|  takes
B152-6 defend  [WIG 30 - 26| defend

10 BI7 6- 11 Wis 32 98
31 B19 9- 13 blunder
Wan15-9 takes W21 9-2 [takes, gets
K
B2211-14 W23 28 - 23

B4 14 - 18 blunder
W2s21-14 takes Wit 14 -5 takes
BT 7-11 W28 31- 27
19 24 D29 11 - 14 blunder |[W30 19 - 10|  takes
B31 12 - 16 |move to edge

Fig. 4. Labelled Board and positions at different stages of the game. Numbers beneath
boards show the board at moves 10, 19 and 24. Table on left lists all the moves played
by the two players

environment. The evolved programs built neural structures from an initial small
random structure. The structures develop during a single game, and allow them
to learn and exhibit intelligent behaviour. We used a technique called Carte-
sian Genetic Programming to encode and evolve seven computational functions
inspired by the biological neuron. In future work, we plan to evaluate this ap-
proach in richer and more complex environments. The eventual aim is to see if
it is possible to evolve a general capability for learning.
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