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ABSTRACT

A coevolutionary competitive learning environment for two
antagonistic agents is presented. The agents are controlled
by a new kind of computational network based on a com-
partmentalised model of neurons. The genetic basis of neu-
rons is an important [27] and neglected aspect of previous
approaches. Accordingly, we have defined a collection of
chromosomes representing various aspects of the neuron:
soma, dendrites and axon branches, and synaptic connec-
tions. Chromosomes are represented and evolved using a
form of genetic programming (GP) known as Cartesian GP.
The network formed by running the chromosomal programs,
has a highly dynamic morphology in which neurons grow,
and die, and neurite branches together with synaptic con-
nections form and change in response to environmental in-
teractions. The idea of this paper is to demonstrate the
importance of the genetic transfer of learned experience and
life time learning. The learning is a consequence of the com-
plex dynamics produced as a result of interaction (coevolu-
tion) between two intelligent agents. Our results show that
both agents exhibit interesting learning capabilities.

Categories and Subject Descriptors

[.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming— Program synthesis; 1.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning— Connectionism and neural nets

General Terms

Algorithms, Design, Performance

Keywords

Genetic Programming, Co-evolution, Brain, Artificial Neu-
ral Networks

INTRODUCTION

In this paper we present a coevolutionary competitive
learning environment in which two agents struggle to achieve
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tasks and survive in a predator-prey relationship [26]. These
agents are controlled by a new kind of computational net-
work inspired by the biological neurons. Agents have a
health which is related to their actions and encounters in a
grid-based environment. The first agent increases its health
(and consequently its fitness) by avoiding deleterious and
attaining beneficial encounters. While the opposing agent
increases its health solely by direct antagonistic encounters
with the first agent. Paredis describes this type of fitness
as ’life-time fitness evaluation’ and discusses how this 'arms
race’ provides a strong driving force toward complexity [25].

The computational network possesed by each agent is
based on a compartmentalised model of neural functions
based on neuroscience. In this model we have idealised
seven neural functions which we have encoded as chromo-
somes (see section 4.4). These represent various aspects of
the neuron: soma, dendrites and axon branches, and synap-
tic connections. The collection of chromosome (forming the
genotype) is encoded and evolved using a well known GP
technique, Cartesian Genetic Programming (CGP) [9, 10].
The neurons are placed in a two dimensional grid. Neurite
branches are allowed to grow and shrink, and communicate
with each other via synapses. Dendrites [8], synaptic dy-
namics [7] and synaptic communication have been included
to enhance the capabilities of the computational network.
The network we described has the potential virtue that it is
autonomous in the sense that when the compartmentalised
chromosomal programs are run a network of neurons, neu-
rites and synapses grows in response to its own internal dy-
namics and the agents environmental experiences. Stanley
and Miikkulainen acheive complexification by the incremen-
tal elaboration of solutions through adding new neural struc-
tures (i.e. neurons and connections) [24]. However our com-
putational network can ’complexify’ itself in a way inspired
by the way the brain complexifies itself without any change
in genetic code.

One of the difficulties one faces at the outset in attempt-
ing to create a dynamic computational model inspired by
neuroscience is that as it stands, the internal dynamics of
biological neurons are too complicated to be modeled in a
machine learning technique. However, we took the view that
the biology of neurons (i.e. their gross morphology and con-
nectivity) 4s sufficiently well understood [22], [20] to allow
us to identify essential sub-systems (and their inputs and
outputs) that we must attempt to evolve in order to achieve
a computational equivalent. Conventional models of neu-
ral networks do not consider the genetics of neurons and
the development (as in biology) of a mature network during



learning. Instead, they are dominated by a static connec-
tionist view of the brain. However, Genetic Programming
(GP) offers the capability to represent neural programs and
the transfer of genetic changes from generation to genera-
tion. GP has been shown to be able to solve problems of
this type in the absence of a fixed model [3] and often these
solutions are not fragile and show unexpected emergent be-
haviours such as self-assembly and self-repairability [11], [12]
which are natural properties of living systems. Thus GP, in
principle, provides us with a means to represent complex
neuron ’engines’ that can be evolved to exhibit the prop-
erties of real neural systems, without the restrictions of a
theoretical model of these systems.

2. CARTESIAN GP

Cartesian Genetic Programming (CGP) was developed
from the work of Miller and Thomson [9, 10] for the evolu-
tionary design of feed forward digital circuits. In CGP pro-
grams are represented by directed acyclic graphs. Graphs
have advantages in that they allow implicit re-use of sub-
graphs. In its original form CGP used a rectangular grid of
computational nodes (in which nodes were not allowed to
take their inputs from a node in the same column). How-
ever, later work relaxed this restriction by always choosing
the number of rows to be one (as used in this paper). The
genotype in CGP has a fixed length. The genes are integers
which encode the function and connections of each node in
the directed graph. However, the phenotype is obtained via
following referenced links in the graph and this can mean
that some genes are not referenced in the path from program
inputs to outputs. This results in a bounded phenotype of
variable length. As a consequence there can be non-coding
genes that have no influence on the phenotype, leading to a
neutral effect on genotype fitness. The characteristics of this
type genotypic redundancy have been investigated in detail
[10, 13, 14, 15, 16] and found to be extremely beneficial to
the evolutionary process on the problems studied.

Each node in the directed graph represents a particular
function and is encoded by a number of genes. The first gene
encodes the function that the node represents, and the re-
maining genes encode where the node takes its inputs from.
The nodes take their inputs from either the output of a pre-
vious node or from a program input (terminal). The number
of inputs that a node has is dictated by the number of inputs
that are required by the function it represents.

Recent work has introduced module acquisition and evolu-
tion into CGP [17] and shown that these techniques are more
scalable on harder problems. However the work presented
in this paper doesn’t yet utilize these methods. In addition
a form of of CGP in which there are separate chromosomes
encoding independent output however sharing modules has
been introduced and shown to improve problem solving abil-
ity considerably [18].

3. ESSENTIAL NEURAL ASPECTS

This section describes the neuron model that we have in-
corporated into the network, along with the biological in-
spiration. Neurons are the main cells responsible for infor-
mation processing in the brain. They produce adaptibility,
learning and intelligent behavior because of their specialized
biophysical structure. Neurons have specialized extensions
called dendrites and axons [19]. Dendrites bring information
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to the cell body and axons take information away from the
cell body. Neurons communicate with each other through
electrochemical processes called synapses. They take inputs
from the neighbouring neurons and decide whether to trans-
fer this information in a forward direction, by firing an ac-
tion potential when the cumulative affect of the inputs is
greater than the firing threshold. Neurons have a number
of dendrites and a single axon. Dendrites have a branch-
ing tree-like structure. Axons have branches at the end to
communicate with other neurons in their vicinity.

Neurons receive signals at the dendrite branches. The
signals are processed locally due to interactions between
neighbouring dendrite branches, and is further processed
along the dendrite due to leaky channels (reduction in sig-
nal magnitude) and voltage gated channels (amplification
of the signal). The soma receives all the signals from den-
drites and decides whether to fire an action potential or not.
If the soma fires, the action potential is transferred to the
axon[21]. The axon takes the signal and transfers it to all
the neighbouring neurons through its branches and synap-
tic connections. Neurons are highly dynamic: new branches
may be produced in the axon and dendrites, old branches
may vanish, branches grow and shrink, new neurons may
be produced and old neurons may die (see section 4.4). We
have idealized this behaviour of neuron in terms of seven
processing compartments (see section 4.4):

- Local interaction among the branches of the same den-
drite.

- Production of new branches, removal of branches, branch
growth.

- Processing signals received from dendrites at soma, and
deciding whether to fire an action potential.

- Creation or destruction of neurons, and modulation of
the firing rate.

- Transfer of potential through axon branches to the neigh-
bouring dendrite branches.

- Updating the weights (and consequently the capability
to make a synapse) of neighbouring dendrite branches and
the axon branch.

- Axon branch growth, possibility of new branches, or
removal of branches.

4. CGP COMPUTATIONAL NETWORK

The CGP Computational Network (CGPCN) is organized
in such a way that neurons are placed randomly in a two di-
mensional grid. The number of neurons are specified by the
user. Each neuron is initially allocated a random number of
dendrites, dendrite branches and axon branches. Neurons
take information through dendrite branches and transfer it
through axon branches to the neighbouring neurons. The
dynamics of the network can change during this process,
the branches may grow or shrink and move from one grid
point to another, can produce new branches, and can disap-
pear, the neurons may die or produce new neurons. Axon
branches transfer information only to the dendrite branches
in their proximity.

A Statefactor is used as a parameter to reduce the com-
putational burden, by keeping some of the neurons and
branches inactive for a number of cycles. When the state-
factor is zero the neurons and branches are considered to be
active and their corresponding program is run. The value of
the Statefactor is affected by genetic processes. The network
consists of:



- Neurons with a number of dendrites, with each dendrite
having a number of branches and an axon having a number
of axon branches.

- A genotype representing the genetic code of the neurons.
Each genotype consists of seven chromosomes (see Section-
4.4), each representing a digital circuitry. These chromo-
somes in turn represent the functionality of different parts
of the neuron.

4.1 Information Processing in the Network

Information processing in the network starts by selecting
the list of active neurons in the network and process them in
a random sequence. The processing of neural components is
carried out in time-slices so as to emulate parallel processing.
Each neuron take the signal from the dendrites by running
the dendritic electrical processing programs (encoded in the
genotype). The signals from dendrites are averaged and
applied to soma program along with the soma potential. The
soma program is run to get the final value of soma potential,
which decides whether a neuron fires an action potential or
not. If so, the signal is transferred to other neurons through
axosynaptic branches. The same process is repeated in all
neurons. After each cycle of neural network the potential
and state factor of the soma and the branches are reduced
by certain factor. This provides a sense of time and makes
inactive branches and neuron to move towards activity step
by step. After five cycles of network or one step of the agent,
the health and weights of neurons and branches are reduced
by certain factor, in order to get rid of unimportant neurons
and branches.

4.2 Evolutionary Strategy

The evolutionary strategy utilised is of the form 1 + A,
with X set to 4 [15], i.e. one parent with 4 offspring (popu-
lation size 5). The parent, or elite, is preserved unaltered,
whilst the offspring are generated by mutation of the par-
ent. The best chromosome is always promoted to the next
generation. However, if there is was a tie for best fitness
then an offspring is chosen in preference to the parent. This
ensures that the benefits of neutral genetic drift are utilized
[13].

4.3 Cartesian Genetic Program (Chromosome)

The CGP function nodes used here consists of multiplexer-
like operations [13] with three inputs per node. The oper-
ations on chromosomes are of two types: Scalar Processing
and Vector Processing. In the scalar case, the inputs and
outputs are integers. In the vector case, the inputs are ar-
ranged in the form of an array. The number of integers per
vector is variable, in this way CGP can handle an arbitrary
number of inputs.

4.4 CGP Model of Neuron

This neuron-inspired model consists of seven main pro-
cesses:

-Electrical Processing in Dendrite

-Life Cycle of Dendrite Branch

-Electrical Processing in Soma

-Life Cycle of Soma

-Electrical Processing in Axo-Synaptic Branch

-Weight Processing in Axo-Synaptic Branch

-Life Cycle of Axo-Synapse Branch

Each of these processes are individually represented by a
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Potential of all the active branches connected to the dendrite
Potential of Soma

Electrical Processing in
Dendrite Branch

Updated Potential of all the active branches connected to the dendrite

Figure 1: Electrical processing in the dendrite

Health of Dendrite Branch  Resistange of Dendrite Branch
Weight of Dendrite Branch

Life Cycle of
Dendrite Branch
Updated Health of Dendrite Branch Updated Resistance of Dendrite Branch

Figure 2: Life cycle of dendrite branch

CGP chromosome. A detailed explanation of the processes
follows.

4.4.1 Electrical Processing in Dendrite

This chromosome handles the interaction between poten-
tials of dendrite branches. Figure 1 shows the inputs and
outputs to the Electrical Processing in dendrite chromo-
some. Input consists of potentials of all the active branches
connected to the dendrite and the soma potential. Since
there are many dendrite branch potentials and one soma
potential, we increase the importance of the soma potential
by creating multiple entries (in this case 10) of it (in the
input vector) before applying. This CGP program produces
the updated values of the dendrite branch potentials as out-
put. The potential of each branch is processed by adding
weighted values of Resistance, Health, and Weight of the
branch. The Statefactor of branches are adjusted based on
the updated value of branch potential. If any of the branch
is active, its life cycle CGP program is run, otherwise con-
tinue processing the other dendrites.

4.4.2 Life Cycle of Dendrite Branch

This chromosome shows the CGP algorithm for the life
cycle of dendrite branches. Figure 2 shows inputs and out-
puts of the chromosome. Variation in Resistance of dendrite
branches is used to decide whether it will grow, shrink, or
stay at its current location. The updated value of dendrite
branch Health decides whether to produce offspring, to die,
or remain as it was with an updated Health value. Produc-
ing offspring results in a new branch at the same grid point
connected to the same dendrite.

4.4.3 Electrical Processing in Soma

This chromsome is responsible for determining the final
value of soma potential after receiving signals from all the
dendrites. All the dendrites potentials are averaged, which
in turn are the average of potentials of active branches at-
tached to them. This average potential along with the soma
potential is applied as input to the Electrical processing in
Soma chromosome as shown in Figure 3.

The chromosome produces an updated value of the soma
potential as output, which is further processed with a weighted
summation of Health and Weight of the soma. The pro-
cessed potential of the soma is then compared with the
threshold potential of the soma, and a decision is made
whether to fire an action potential or not. If the soma fires
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Figure 3: Electrical processing in soma
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Figure 4: Soma life cycle

it is kept inactive (refractory period) for a few cycles by
changing its Statefactor, the soma life cycle chromosome is
run, and the firing potential is sent to the other neurons by
running the axosynapse electrical processing chromosome.
The threshold potential of soma is also adjusted to a new
value if the soma fires.

4.4.4 Soma Life Cycle

Figure 4 shows inputs and outputs of the soma life cycle
chromosome. This chromosome is intended to evaluate the
life cycle of neuron. This chromosome produces updated
values of Health and Weight of the soma as output. The
updated value of the soma Health decides whether the soma
should produce offspring, should die or continue as it is. If it
produces offspring, then a new neuron is introduced into the
network with a random number of dendrites and branches
at the same location.

4.4.5 Electrical Processing in Axo-Synaptic Branch

The potential from the soma is transferred to other neu-
rons through axon branches. Both the axon and the synapse
are considered as a single entity with combined properties.
Figure 5 shows the inputs and outputs to the chromosome
responsible for the electrical processing in axosynaptic branch.
As mentioned before, the soma potential is biased ( see sec-
tion 4.4.1). The chromosome produces the updated values
of dendrite branch potentials and the axo-synaptic poten-
tial as output. The axo-synaptic potential is then processed
as a weighted summation of Health, Weight and Resistance
of the axon branch. The axo-synaptic branch weight pro-
cessing program (see figure 6) is run after the above process
and the processed axo-synaptic potential is assigned to the
dendrite branch having the highest updated Weight. The
Statefactor of the axosynaptic branch is also updated. If
the axo-synaptic branch is active its life cycle program is
executed.

4.4.6 Axo-synaptic Branch Weight Processing

The weight of axon branches affects its capability to mod-

Potential of Soma Potential ofJaE the neighboring active dendrite branches

Axosynapse
Potential of synapse
Updated Potential of all the neighboring active dendrite branches

Figure 5: Electrical processing in axosynaptic

branch
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ptic weight Weights of Neighboring dendrites branches
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of Branches
Updated Axosynaptic weight

Updated Weights of Neighboring dendrites branches
Figure 6: Axo-synaptic branch weight processing
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Axosynaptic Branc
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Figure 7: Axo-synaptic branch life cycle

Resistance of Axosynapse

ulate and transfer the information (signal) efficiently. The
weights are responsible for modulating the signal. They af-
fect almost all the neural processes either by virtue of being
an input to a chromosomal program or as a factor in post
processing of signals.

Figure 6 shows the inputs and the outputs to the axosy-
naptic weight processing chromosome. The CGP program
encoded in this chromosome takes as input the Weights of
the axo-synapse and the neighbouring dendrite branches and
produces their updated values as output.

4.4.7 Axo-Synaptic Branch Life Cycle

The role of this chromosome is similar to dendrite branch
life cycle chromosome. Figure 7 shows the inputs and out-
puts of axosynaptic branch life cycle chromosome. It takes
Health and Resistance of the axon branch as input, and pro-
duces the corresponding updated values as output.

The updated values of Resistance are used to decide whether
the axon branch should grow, shrink, or stay at its current
location. The Health of the axon branch decides whether
the branch will die, produce offspring, or merely continue
with an updated value of health.

4.5 Inputs and Outputs

The inputs are applied through virtual axon branches by
using axosynaptic electrical processing chromosomes. These
branches are distributed in the network in a similar way to
the axon branches of neurons. When inputs are applied to
the system, the program encoded in the axo-synaptic electri-
cal branch chromosome is executed, and the resulting signal
is transfered to its neighbouring active dendrite branches.
Similarly we have output virtual neurons which read the
signal from the system through virtual dendrite branches.
These virtual dendrite branches are distributed across the
network. These branches are updated by the axo-synaptic
chromosomes of neurons in the same way as other dendrite
branches. The output from the output neuron is taken with-
out further processing.

5. EXPERIMENTAL SETUP

5.1 Competitive Learning Scenario

The two agents live in a two dimensional grid (10x10)
containing a number of pits (ten). Each agent has a home
square. On one square there is a quantity of gold (see Fig.
9). This problem is a variant of an agent-based learning task,
called Wumpus World, studied in Artificial Intelligence [23].



The positions of the pits and the gold is fixed but randomly
assigned. The job of the first agent is to obtain the gold
as many times as it can during its life time, while avoiding
the pits and the second agent. The second agent’s task is to
catch the first agent as many times as it can. The second
agent’s task is more difficult than the first agent as the target
for the second agent is mobile while the target for the first
agent (the gold) is static.

During its life time, every time the second agent catches
the first agent it becomes more difficult for it to catch it
again, as the first agent learns, and tries to find a path to
the gold that avoids the second agent. In order to avoid the
imbalance in the difficulty of tasks for both agents, we intro-
duced pits which only affect the life of the first agent. The
first agent is weakened whenever it passes through squares
containing pits. It always starts from a special square called
home that is at the top left corner of the grid world. The
second agent’s home is at a corner of the grid that is diago-
nally opposite. Both the agents perceive a breeze in squares
adjacent to the pits and a smell in the squares adjacent to
each other directly not diagonally. The agents also perceive
a glitter while passing close to the gold. Also, the agents
will receive different signals while passing through these lo-
cations from different directions. So they have to learn to
cope with, not only the breeze or the smell, but also with
the direction of the breeze or the smell, and make a decision
to move accordingly. All the locations (other than home)
which are safe provide no signal. As the pits and the gold
only directly affect the first agent, the second agent has to
differentiate between all these signals (thus for it there is
more noise in the environment) and try to identify the pres-
ence of the first agent in order to catch it. The two agents
continue their journey as long as their health remains above
zero (see later for more details).

It is important to appreciate how difficult this problem
is. The two agents start with a few neurons with a ran-
dom number of dendrites and branches, and with random
connections. So, firstly, evolution must find a series of pro-
grams that build a computational network that is capable of
solving the task while maintaining a stable network (i.e. not
losing all the neurons or branches etc.). Secondly, it must
find a way of processing infrequent environmental signals
and differentiate among them. Thirdly, it must navigate in
this environment using some form of memory or knowledge
about the meaning of the signals, whether they are ben-
eficial or deleterious. Fourthly, it must confer goal-driven
behaviour on two virtual agents while increasing their life
span.

Every time the second agent catches the first agent, both
are reallocated to their home squares, to start their job
again. Similarly, if the first agent gets the gold it is real-
located to its home square. However, in this case the second
agent remains at its previous location. In order to do well
the first agent has to remember how to find the gold again
while avoiding pits and the second agent.

Both the agents are assigned with an initial health of 100
units. If the first agent is caught by the second agent its
health is reduced by 60%, if caught by a pit its health is
reduced by 10 units, if it gets the gold its health is increased
by 60%. The second agent is not affected by anything except
that its health is increased by 60% everytime it catches the
first agent. For each single move the healths of the either
agents are reduced by 1 unit. The fitness of the agents is ac-
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cumulated over their lifetimes (while each agent’s health is
non-zero) in the following way: For each move, the fitness of
the agent is increased by one. Everytime the agent obtains
the gold, its fitness is increased by 1000. The fitness func-
tion for the second agent works as follows: For each move,
the fitness of the agent is increased by one. Everytime the
second agent catches the first agent, its fitness is increased
by 1000.

When the experiment starts, both the agents take their
inputs from the corresponding grid squares where they are
located. This input is applied to their CGPCNs through vir-
tual axosynapses. The networks are then run for five cycles.
During this process they update the potentials of the vir-
tual dendrite branches acting as the output of the networks.
These updated potentials are averaged, and used to decide
the direction of movement for the corresponding agents. The
same process is repeated for the next grid square for both
the agents until they die. The agents stop their journey if
either their health becomes zero, or all their neurons die, or
all the dendrite or axon branches die.

Each of five first agent population members are tested
against the best performing second agent genotype from the
previous generation. Similarly each of the five second agent
population members are tested against the best perform-
ing first agent genotype from the previous generation. The
initial random network is same for both the first and the
second agent. It is the genotypes in each generation which
cause different networks to form. The best first and sec-
ond agent genotypes are selected as the parents for the new
population.

The idea behind these experiments is two fold. Firstly
we want to demonstrate that agents learn during their life
time (i.e. post evolution) thus demonstrating that evolu-
tion has evolved the ability to learn. Secondly we wish to
demonstrate that the genetic memory (learned experiences)
obtained by an agent during its life time can be transferred
to next generation through the genetic code.

5.2 CGP Computational Network Setup

The CGPCN is arranged in the following manner for this
experiment. The network space where neurons and branches
are located is arranged in the form of a 3x4 grid. Inputs and
outputs are applied at five different random locations. Ini-
tial number of neurons is 5. Maximum number of dendrites
is 5. Maximum number of dendrite and axon branches is 5.
Maximum branch StateFactor is 7. Maximum soma State-
Factor is 3. Mutation rate is 5%. Maximum number of
nodes per chromosome is 100.

5.3 Results and Analysis

Figure 8 shows how the fitness of the agents, in one par-
ticular evolutionary run, change over 1,250 generations. It
is evident that there are increases and decreases in fitness at
different stages for each agent corresponding to when either
of them has the upper hand.

The y-ordinate divided by 1000 gives the number of times
an agent achieves its goals. The agents exhibit different
kinds of dynamic behavior due to the interactions between
neurons. Initially, the agents do not know anything about
the gold, pits, and the signals that indicate the presence of
these objects nearby. As they evolve, the agents develop
their own memory of life experiences and this is encoded ge-
netically. Each agent starts with a fixed randomly assigned
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Figure 8: Fitness of the agents with evolutionary
generations

neural structure that develops during the agent’s lifetime
making it capable of achieving the goal. Figure 8 shows
that initially, the fitness of the agents varies a lot, but as
the number of generation increases the agents become more
skillful and the variations in the fitness reduce. The network
is organized in such a way that one agents benefits at the
expense of the other. There are also some points along the
fitness graph when the fitness of both the agents goes down,
this occurs when they are both unable to acheive their goals.
Often however, even in the very next generation they find a
way to achieve their goals. It is interesting to observe that
just before generation 700, both agents become reasonably
skillful. The first agent obtains gold twice (and on one oc-
casion 3 times), while at the same time the second agent
catches the first agent twice (and later three times). This
is followed by agents having fluctuating fortunes. Follow-
ing that, at around generation 1,100 we see both the agents
acheiving their goals, with the second agent being the more
successful. Further fitness improvements occur at later gen-
erations (not shown). The extra difficulty of the task faced
by the second agent generally causes it to adopt more com-
plex strategies and it is often more skillful than the first
agent (i.e. it catches it more often than the first agent gets
the gold).

In further experimental analysis we looked at the behaviour
of the agents in detail. To do this we gave the agents an
initial health of 300 rather than the 100 (used during evo-
lution). This resulted in the first agent getting the gold five
times (see figure 9) while second agent caught it just once.
In the six figures A-F in Fig. 9 we see the movements of the
two agents. The first agents movements are recorded with
black arrows and the second agents by grey arrows. Arrows
indicating the direction of movement. Squares 0 and 99 are
the homes of the first and second agent respectively. The
gold is located on square 86. The circles show the pres-
ence of pits. In Fig. 9A both agents begin with randomly
assigned initial networks of neurons which become mature
networks by running the seven CGP programs. The first
agent takes a fairly direct route toward the gold, encounter-
ing two pits along the way (Fig. 9A). Note that, although
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Figure 9: Different Paths Followed by a pair of
Agents

avoiding pits is desirable it is not necessary, as the agent
is only weakened. The second agent spends a great deal of
time on squares 98 and 88 and moves toward the gold just
after the first agent obtains it (and is subsequently, immedi-
ately placed back on its home square). After this, (Fig. 9B)
interestingly, the first agent now takes a completely different
route to the gold (in fact, the minimum path) and avoids
all the pits. Meanwhile, the second agent just lurks near
the gold, spending all its time on squares 96 and 86. We
generally found that the second agent exhibited this kind of
behaviour. This is a good strategy for it, as the first agent
(if any good) will eventually come close to the gold and this
gives the second agent a chance of catching it. On this occa-
sion, the second agent is unlucky and jumps away from the
gold at the same time that the first agent obtains it. Fig. 9C
shows the first agent following an identical path to the gold
as it did at the start. This is very surprising, as its neural
network has changed during its lifetime and its experiences.
This strongly suggests that it has somehow encoded a map
of its environment (and we surmise that encountering pits is
very useful, as unlike encountering a breeze the agent doesn’t
have to make inferences about the location of the pit). How-
ever, when it arrives near the gold (square 96) it is attacked
by the second agent and is reallocated to its home square.
Its subsequent behaviour is interesting (Fig. 9D). It follows
a very different, meandering, path to the gold. It spends
time alternating between squares 8 and 9, before turning
back and arriving home again, only to set off down the left
hand side, in the direction of the gold. The behaviour of
the second agent is odd. Having been replaced to its home
square (99) after attacking the first agent, it moves around
briefly in the bottom right four squares before its CGP com-
putational network dies. This illustrates a interesting, but
puzzling, phenomenon that we observed with other evolved
agents. Often, the agents’s CGPCN dies when the health
of the agent is a small number and becomes active (with
many branches and synapses) when it has a high value of
health. This is puzzling, since the health of an agent is not
detectable to the agent’s brain, as it is never supplied as
an input to the CGPCN! In figures 9E and 9F we see the
subsequent behaviour of the first agent, where it succesfully



obtains the gold again. The results suggest that the first
agent produces an internal map of its environment early in
their evolutionary history. It is interesting to note that after
the first agent is attacked by the second its brain is strongly
affected so that it follows a totally different path. However,
when it doesn’t find any gold, it returns to its home square
and after that tries the same path that led to its attack by
the second agent (with some minor variations), eventually
finding the gold. In the subsequent tries it tries to take the
shortest paths to the gold. Even after the events shown in
figure 9F we found that when the first agent is reallocated
to its starting position, it again followed a short path to get
to the gold, but unfortunately when it reached the gold its
network died.

We also examined the behaviour of this agent in a number
of other situations. We removed all pits and found that
the first agent moved around the environment, aparently at
random, and was unable to find the gold. This strongly
suggests that the agent uses environmental cues (i.e. pits)
to navigate. We also moved the second agent to square 56
(and disabled its ability to move from this square). This lies
directly on the path of the first agent in Fig. 9B. We found
that the behaviour of the first agent was identical to its
previous behaviour except that it was caught by the second
agent (on square 56) and didn’t avoid that square when it
encountered the smell signal on square 46. This shows that
this agents network building program has not yet given it
a general response of avoiding the second agent. But this
affected its network and caused it to follow a totally different
path to avoid the second agent. The agents used in these
experiments came from 220th generation. At this stage in
evolution the useful behaviours have not yet been encoded
in the genotype so that the first agent doesn’t fully respond
to the presence of the second agent and the degree to which
it influences its health.

During an agent’s lifetime the structural development and
activity of the CGPCN changes considerably. We examined
the variations in health (Fig. 10) and network morphol-
ogy during the lives of the two agents whose behaviour was
shown in Figure 9. Figures 11 and 12 shows respectively, the
variation of numbers of neurons, axon and dendrite branches
during the first and second agents life. The healths of the
agents fluctuate according to their experiences. The rises
shows the number of times the first agent obtains gold. The
drops are of two kinds: the smaller drops shows the time
when agent was fell into a pit, and larger drop shows when
it was attacked by the second agent. The linear decreases
are caused by the decrease in health with each step of the
agent. The health of both the agents decrease continuously
and only rise when they achieve their goal. When the second
agent catches the first agent its health is increased 60%. It
can be seen how the health of the first agent drops rapidly
immediately after it is attacked by the second agent. Shortly
after this, rather strangely, all the neurons in the second
agent’s network dies. Figure 11 and 12 shows some interest-
ing behaviour. Close examination shows that the behaviour
of the networks are strongly correlated with the variations
in agents’ health. We observed this behaviour over differ-
ent evolutionary runs of the network. The structure of the
network follows the rises and drops in the agents’ health.
This is puzzling since the network only receives the signals
from the beneficial and deleterious events, however its struc-
ture changes in a way related to the importance (in terms
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Figure 10: Variation in Agents Health as it makes
moves (steps) in its environment

of health) of the signal it receives. In most of the cases
once the first agent is caught by the second agent it was
never able to get the gold again during its lifetime because
the interaction with second agent affected its network by
such a lot that it killed some neurons. In order to test the
validity of this argument we tested the system by increas-
ing its initial health as demonstrated above in figure 9. It
was only through doing this that we found out that in this
case the agent was able to get the gold again after being
caught by the second agent. It was lucky that the second
agent died soon after it caught the first agent. It is evi-
dent that the network of the second agent was about to die
(see figure 11) before it caught the first agent, but when
it caught the first agent it 'boosted’ its brain and made it
able to live a bit longer. Note, each agent step corresponds
to five cycles of the network. We also tested the system
by increasing and decreasing the initial healths of both the
agents. But as the value of health increases it diminishes
the influence of deleterious and beneficial encounters. And
as it decreases, it causes the deleterious effects to outweigh
the beneficial effects and the agents lose sight of their goals.
So an initial life of 100 was considered as the best choice for
the evolutionary experiments. Traditional artificial neural
networks work on the principle of updating weights to find
an aproximate solution to a problem. The static weighted
connections hold the learned behaviour. Unfortunately, this
can mean that even for a slightly changed problem the net-
work needs to be retrained to maintain a good performance.
Whereas in our case, the CGPCN builds the network and
any learned behaviour through experience of the environ-
ment, so it is, in a sense, self-training. This environmental
responsiveness, however comes at a cost. Since the networks
are time-dependent it is possible for all neuron components
to dwindle away.
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Figure 11: Variation of neurons and neural branches
with network update cycles (5 per step) during the
first agents life
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Figure 12: Variation of neurons and neural branches
with network update cycles (5 per step) during the
second agents life

6. CONCLUSION

We have described co-evolutionary competitive learning
environment in which the neuron-inspired computational
networks of two antagonistic agents grow and change in re-
sponse to their behaviour, interactions with each other, and
the environment. We found that the agents can learn from
their experiences and in some cases appear to build a kind
of map of their environment. We used a technique called
Cartesian Genetic Programming to encode and evolve seven
computational functions inspired by the function of the neu-
ron. In future work, we plan to evaluate this approach in
richer and more complicated environments. The eventual
aim is to see if it is possible to evolve a general capability
for learning.
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