
Adaptivity in Cell Based Optimization for Information Ecosystems

Joseph A. Rothermich
Icosystem Corporation

10 Fawcett Street
Cambridge, MA 02138

jr@icosystem.com

Fang Wang
Intelligent Systems Laboratory,

BTexact
Adastral Park, Ipswich IP5 3RE

United Kingdom
fang.wang@bt.com

Julian F. Miller
School of Computer Science
University of Birmingham
Edgbaston, Birmingham

B15 2TT, United Kingdom
j.miller@cs.bham.ac.uk

Abstract. A Cell Based Optimization (CBO) algorithm
is proposed which takes inspiration from the collective
behavior of Cellular Slime Molds (Dictyostelium
discoideum). Experiments with CBO are conducted to
study the ability of simple cell-like agents to
collectively manage resources across a distributed
network. Cells, or agents, only have local information
and can signal, move, divide, and die. Heterogeneous
populations of the cells are evolved using Cartesian
Genetic Programming (CGP). Several Experiments
were carried out to examine the adaptation of cells to
changing user demand patterns. CBO performance
was compared using various methods to change
demand. The experiments showed that populations
consistently evolve to produce effective solutions. The
populations produce better solutions when user
demand patterns fluctuated over time instead of
environments with static demand. This is a surprising
result that shows that populations need to be
challenged during the evolutionary process to produce
good results.

1 Introduction

Information Systems are becoming increasingly complex
and dynamic. One example of this trend is the Internet.
The Internet can be described as an Information
Ecosystem where a complex web of information
producers and information consumers interact in a
constantly growing and changing environment (Marrow,
et al., 2001). As complexity continues to increase, it
becomes difficult to continue building systems using
traditional design methods. Instead of the current
centralized top-down methods, bottom-up approaches
must be explored. Bottom-up methodologies start the
design process with simple components and work
towards a more complex whole. An example of a
bottom-up process in nature is the emergent behavior in
ant colonies, which are able to perform complex tasks
even though the components, the ants themselves, are
simple.

One problem with designing systems this way is that
humans have a hard time understanding bottom-up
systems. Humans have a centralized mind-set (Resnick,
1994), which often forces us to see systems using a
centralized organization. Once systems become
decentralized, it is hard for humans to understand how

their components work together to perform its complex
functionality. It is even harder for us to design this
behavior. One way that we may be better able to
understand decentralized systems is looking towards
nature. Swarming insects such as ants and bees have
decentralized functionality. Another example is Cellular
Slime Molds (Dictyostelium discoideum). Slime Molds
spend most of their life as single celled organisms but
occasionally exhibit behaviors associated with multi-
celled organisms.

When Slime Mold cells begin to deplete their local
food source, they aggregate to form a slug-like creature
that helps relocate the population to a more fruitful
environment. This is done via cell-cell signaling
combined with a positive feedback mechanism. It was
once thought that there was a leader for this aggregation
but it is now known to be a decentralized process (Keller
& Segel, 1970). The emergent behavior of Slime Molds
is an example of order arising from simple decentralized
parts. Their collective behavior has been demonstrated
by showing that they can find the shortest path through a
maze (Nakagaki et al., 2000).

This paper aims to test a model based on the behaviors
of Cellular Slime Molds applied to an optimization
problem in the Information Ecosystem domain. The
Cell-Based Optimization (CBO) model was extended
from a previous research project (Rothermich & Miller,
2002) to include simulated user requests and their
processing by cell-like agents. Several experiments are
conducted to study the ability of evolving populations of
agents to effectively treat user requests in a changing
environment.

There has been a large amount of study in the
application of ideas from nature to computer science.
Ant Systems (AS) and Ant Colony Optimization (ACO)
(Dorigo & Gambardella, 1997; Dorigo & Di Caro, 1999)
have been applied to optimization problems such as
routing and scheduling. Previous cell-based models have
been created by Agarwal (1995), Fleischer and Barr
(1992), Ray (1994), Resnick (1994). This paper differs
in that cell behavior is autonomously evolved through a
form of genetic programming called Cartesian Genetic
Programming (CGP) and in its application to an
optimization problem.

Multi-agent systems have been used in Information
Ecosystems in research such as InfoSleuth (Bayardo et
al., 1997), Amalthea (Moukas, 1997), and the
InfoSpiders project (Menczer & Monge, 1999). These
projects differ in that they often focus on search and

identification of information instead of allocation of
resources. There is a large amount of research in
distributed load balancing optimization (Chavez et al.,
1997; Schaerf, Shoham, & Tennenholtz, 1995; Pulidas,
Towsley, & Stankovic, 1988). These projects consider
the capacity at each location to be fixed, while the jobs
that need to be performed can be shifted to different
locations. This is the inverse of the problem faced in this
paper since the user requests are generated at a certain
database and cannot be transferred. The capacity, i.e.,
the agents, can however be transferred to different
locations.

This paper proposes Cell-Based Optimization (CBO)
to maximize the processing of user requests in a
distributed information ecosystem. A set of simple
information agents is utilized to retrieve information for
users, each of which is equipped with a cell-based model.
Without full knowledge of the ecosystem, cell-like agents
are evolved to serve user requests in local environments
or migrate to remote environments searching for
additional requests. The collective behavior of the agents
results in timely request processing, which is adaptive to
changing user demands. This model has been
implemented in a Java application and also within the
DIET (Decentralized Information Ecosystem
Technologies) Platform (Hoile et al., 2002). This is a
mobile agent toolkit that creates a foundation for building
scalable simulations and applications of interacting,
lightweight Infohabitants (entities that can process
information).

The remaining sections of this paper are organized as
follows. The next section introduces the design of the
cell-based model used for the creation of agents. Section
3 explains the resource optimization problem in
information ecosystems and how cell-like agents are used
to solve this problem. Experimental results are shown in
Section 4. The last section draws conclusions from the
experimental results and proposes future work.

2 Cell-based model design

Similar to Slime Mold Cells, cell-like agents have inputs
and outputs, and various functions. This model does not
intend to create a detailed model of natural cells, instead
the abilities of cells are abstracted at a high level. The
internal processing of agents is controlled by statements
generated through evolution and the use of Genetic
Programming.

2.1 Cell Inputs

Natural cells have the ability to sense and absorb
chemicals from their environment. They can either
absorb chemicals directly, or the cell can accumulate the
chemical in a receptor that only allows chemicals to be
absorbed after a certain threshold has been passed. A set
of imaginary chemicals was used in the cell-based model.
One chemical represented an energy source for the cells.

The other chemical was emitted by the cells themselves,
simulating cell-cell signaling.

Real cells do not have any information about their
location. They only know what chemicals are present
around them and the concentration gradients for each.
The cell-based model followed a similar approach where
cells do not know their location or neighbors but can
sense the chemicals being emitted by them.

A threshold parameter similar to receptors in nature
was used for cell inputs. This allowed the sensitivity of
the cells to vary. Cells in the cell-based model also have
the internal input of knowing how much energy they
have. This means the actions they choose might be
dependent upon their current health.

2.2 Cell Functions

2.2.1 Movement

Cells have the ability to move towards or away from
chemical gradients, called chemotaxis. The cells created
by the cell-based model have similar functionality. They
can be programmed to move in relation to gradients of
simulated chemicals. A small degree of randomness is
also added to the direction of the cell’s movement.

2.2.2 Cell Division

The cells in the cell-based model also have the ability to
divide. Once a cell divides, the cell itself no longer exists
and is replaced by two offspring. Each offspring has half
of the energy of the original cell plus a small energy cost
for the division process. The offspring inherit the genes
of the parent cell plus some possible mutation.

2.2.3 Chemical Signaling

Cells have the ability to release a simulated chemical into
the environment. This gives the cells a way to
communicate with each other similar to the way that
Cellular Slime Molds signal with chemical signals, called
cyclic AMP, during their aggregation phase.

2.3 Cell evolution and Genotype Representation

2.3.1 Cartesian Genetic Programming

The cell-based model utilizes Cartesian Genetic
Programming (CGP) to evolve cell functions. A genotype
in Cartesian Genetic Programming is an integer string
that encodes an indexed, feed forward, acyclic graph
(Miller and Thomson, 2000). Unlike the parse tree
representation in the standard GP (Koza, 1992), a
genotype-phenotype mapping is used to create the graph
phenotype from the integer string genotype. Each node in
the genotype contains two types of genes: connection
genes that represent how the inputs to the node are
connected to program inputs or the outputs of other
nodes, and a function gene that represents the operation
that the node carries out on the inputs it receives. The

nodes that are not involved in the linked path between the
inputs and outputs of the program are inactive in the
phenotype. Such nodes have no effect on the behavior of
the phenotype. However a point mutation operator can
re-connect inactive nodes or disconnect active ones. This
allows neutral drift to take place. This has been shown
elsewhere to be extremely beneficial to the search process
for a number of problems (Miller and Thomson, 2000,
Vassilev and Miller, 2000, Yu and Miller, 2001).

2.3.2 Cell-Based CGP Representation

As in standard CGP, the genome consists of a number of
genes that are linked to form a graph. The right-most
gene is executed first, and each gene can be connected to
any other gene on its left. The final gene on the left is
always a ‘do nothing’ function. During the decoding of
the phenotype, if no action has been reached while
traversing the graph, then eventually the left-most ‘do
nothing’ gene will be called and the cell will not perform
an action. This case occurs less often as the genotype
length parameter is increased. In the following
optimization experiments, an empirical genome length of
20 genes was used. This genome allowed for complex
behaviors (actions based on nested conditions) with a
reasonable length.

Each gene in the CGP genome consists of an array of
four numbers (e.g., 1012), representing the function (1)
of the gene, an external chemical input (2) of the gene,
and two connections (3) and (4) of the gene with other
genes in the genome. A pictorial illustration of a single
gene is shown in Figure 1. The node number in Figure 1
is an identifier used to indicate the location of a gene in a
genome.

(1) Function

(2) External Input

(3) Connection 1

(4) Connection 2

Node number(1) Function

(2) External Input

(3) Connection 1

(4) Connection 2

Node number

Figure 1: A Single Gene In The CGP Representation

In order to maintain the basic actions of Slime Mold
Cells, a series of functions are designed including
conditional and unconditional functions. The conditional
functions provide the cells with the ability to act
according to external stimuli or internal conditions such
as a cell energy level. For the information-retrieving
agents in information ecosystems, we use the functions
shown in Table 1. These actions provide the basic
functions and conditions of Slime Mold cells. As an
example, if a gene is coded with function one, it will
move towards the chemical referenced in the external
input (2). If a cell is coded with function three, the cell
will check for the presence of the chemical referenced in
(2) and then execute the gene referenced in the
connection (3) or (4) accordingly. The parameters
UPPER_THRESHOLD and LOWER_THRESHOLD used

in functions five and six are local variables for each cell
that are considered part of the evolving genotype.

Table 1: Cell Functions

Function Description
0 Do Nothing
1 Move towards (2)
2 Move away from (2)
3 If (2) is present do (3), else do (4)
4 If (2) is present do (4), else do (3)
5 If energy is above UPPER_THRESHOLD

do (3), else do (4)
6 If energy is below LOWER_THRESHOLD

do (3), else do (4)
7 Perform (3) then divide
8 Perform (3) then release chemical signal

In order to fully explain the decoding process for a

phenotype, it is helpful to give an example. Figure 2
shows a sample genotype with five genes. The positions
containing functions are underlined. The same genotype
can be represented pictorially as shown in Figure 3.

0 1 2 3 4 5

|0000|7100|1010|1012|3100|3024|

Figure 2: Example Cell Genotype In CGP

5

0

2

4

34

1

0

0

33

0

1

2

12

0

1

0

11

1

0

0

70

0

0

0

0 5

0

2

4

3 5

0

2

4

34

1

0

0

3 4

1

0

0

33

0

1

2

1 3

0

1

2

12

0

1

0

1 2

0

1

0

11

1

0

0

7 1

1

0

0

70

0

0

0

0 0

0

0

0

0

Figure 3: Pictorial Representation Of Example Genotype

 If Chemical 0 is present
 Move towards Chemical 0
 Else
 If Chemical 1 is present
 Do nothing
 Else
 Do nothing

Figure 4: Example Decoded CGP Cell Phenotype

The genotype is mapped to a phenotype by traversing
the graph starting at the right-most gene. The function
assigned to gene five is function 3: If (2) is present, do (3)
else do (4). In this model, a zero represents the energy
chemical and a one represents the chemical signal
emitted from cells. The value in position (2) is zero, so if
the energy chemical is present, decode and perform the
gene identified by position (3): which is gene number
two. Otherwise, perform the gene referenced in position
(4): which is gene number four. This process continues
until an action is found or the genotype has been

completely decoded without an action, which would
result in a “Do Nothing” function.

The fully decoded phenotype for this example
describes the cell’s behavior and is a series of IF-ELSE
statements. The phenotype is shown in Figure 4.

2.4 Evolution

2.4.1 Genetic Operators

When a cell divides, one of its offspring is mutated and
the other inherits the parent’s genes exactly. This allows
for a type of elitism so that well conditioned genotypes
are not lost in the next generation.

A first mutation consists of randomly changing one of
the integer values in the genotype’s CGP string. Only
one value is changed per mutation. A mutation can
modify the function, chemical input, or connections in a
gene. Since only a portion of the genotype is decoded
into the phenotype, mutations often do not affect the
behavior of a cell.

A second mutation was implemented by adding or
subtracting a random number to the upper and lower
energy threshold variables. If thresholds overlap, e.g.,
the upper is lower than the lower threshold, the model
still operates since thresholds are used in separate
conditional functions.

2.4.2 Cell Population and Fitness Evaluation

A random population of cells is created for each
execution. The initial, maximum and minimum number
of cells in a population can be controlled through
program parameters. If the population size falls below the
minimum, new random cells are be created. When the
maximum population size is reached, cells are no longer
permitted to divide. Cells need to compete or cooperate
for a limited amount of resources from the environment.
If cells are not successful in getting energy, they die.

Fitness is not explicitly measured, but instead fit
individuals are those that survive by collecting energy
and/or passed on their genes to future generations.
Therefore the concepts of fitness evaluations and
generations from typical Evolutionary Algorithms are not
needed in this model.

3 Test Design

3.1 Problem Definition

In an Information Ecosystem, databases or information
services are distributed throughout a network. At each
location in the network, users make requests, or queries,
for information from these services. An appropriate
number of agents are required at each location to treat a
demand level for a database. The problem is shown
pictorially in Figure 5.

Agent
Agent

AgentAgent

AgentAgent

AgentAgent

DBDB

Database 1Database 1

Agent
Agent

DB
DB

Database 3Database 3

DB
DB

Database 2Database 2

Agent
Agent

Agent
Agent

AgentAgent

DB
DB

Database 4Database 4

AgentAgent

Agent
Agent

Agent
Agent

AgentAgent

Agent
Agent

Agent
Agent

Agent

Agent Migration

Figure 5: Resource Allocation Problem

As shown in Figure 5, several databases (1, 2, 3, …N)
are distributed across a network. Assume each user
makes one request per time-period, so Database 1 will
have an average of four user requests per time-period;
Database 2 will have an average of one request; and
Database 3 an average of eight. There are six agents at
Database 2 but only one user requesting service.
Database 3 has a shortage of agents. The figure shows
agents migrating from Database 2 to Database 3 to help
balance out this discrepancy.

The task of allocating agents is easy to solve with a
global knowledge of resources and demand across the
network. However in open distributed networks, usually
only local knowledge is known. The central maintenance
of this information would not only prevent scalability and
create risks of single points of failure, but may be
impossible in a truly distributed network such as the
Internet.

The problem is made more complicated in that the
user demand may not always stay constant. An example
of this would be web sites that are popular because of a
current trend or news story but then fade in popularity
after the topic has become outdated.

The problem can be stated as this: Can a group of
information processing agents collectively distribute
themselves across a network to maximize the processing
of user requests given the following?

• The agents only have local information.

• The user demand patterns may or may not change
with time

• The number of agents should be appropriate for the
level of demand (i.e., there is a limited capacity for
agents in the system).

3.2 Test design

3.2.1 Test Approach

The cell-based model introduced in Section 2 is
utilized to create cell-like agents to solve the resource
management problem discussed above. Cell-like agents
can process one user request per time-step. Databases
signal the number of untreated local requests as a
chemical. The level of chemical at a single location is

equal to the number of outstanding local requests, plus
the amount of chemical that has diffused from neighbor
locations. A neighbor’s chemical level indicates the level
of unfulfilled demand at that location as well as the
chemical it has received from its neighbor’s locations.
Since chemicals diffuse throughout the web of connected
databases, the chemical signal is decreased as distance
from the source database increases. Agents gain energy
by processing user requests but lose energy continuously
for other activities (e.g., migration) or doing nothing
(e.g., their metabolism).

Tests were conducted using 50 trials per experiment.
After several informal tests, 7,000 time-steps were
determined to be an adequate experiment length to ensure
completeness.

The network is represented as a grid pattern, however
any type of network connectivity, including random
connections, can be used. Each database is connected to
its four adjacent neighbors. A ten by ten sized grid
creates a network of 100 databases. This size is chosen
so that performance is acceptable and there are enough
databases to present a challenge to manage resources.

An average of ten new user requests per time-step are
generated at each database. Using a Poisson distribution,
λ represents the average number of new requests at each
database per time-step. A unique λ is assigned for each
database by using a Poisson distribution with mean of 10.
Tests are performed using an initial population of 1000
randomly programmed cells. Each cell starts with 10
units of energy and 0.3 units are deducted during each
time-step. Cells receive one unit of energy for processing
a user request. The cells have 15% randomness in their
direction of movement and have no polarity. This set of
parameters provided reasonable results during several
informal tests; it was decided that this set of parameters
used across all experiments would serve as a consistent
basis for experimentation.

Although the model is also implemented within the
DIET platform, the experiments in this paper were
performed in a separate stand-alone custom Java
application. This application took advantage of previous
work including visualization and the collection of
metrics. However, unlike DIET, it does not scale well for
large networks.

3.2.2 Experiments Conducted

A comparison is made between hard-coded cell
designs and evolved designs. This provides a way to
assess the performance of the evolving populations versus
a human-designed baseline solution. The stability of
evolved solutions is judged by monitoring the completed
user requests across experiments.

Adaptability is assessed by monitoring the
performance of cell populations when user demand
patterns vary over time. Three methods are used to test
the effects of changes in demand patterns over time:

Simultaneous Shift in Demand. One set of tests is
carried out using a simultaneous shift in demand. Every

500 time-steps, the values for
�
 in the Poisson

distribution are globally reassigned. The reassignment is
carried out instantaneously across all locations. The
global system demand remains the same overall, but
demand within each environment changes.

Gradual Shift in Demand. Another test conducted is
to change the demand patterns gradually. This approach
still resets each environment’s

�
 every 500 time-steps, but

the new
�
’ is updated gradually. Each time-step after the

global demand distribution is reset, a number of
environments are called to increment or decrement their
current

�
 in the direction of the new value

�
’ . This

continues until the value
�
 in each environment equals its

�
’ .

Fixed Demand. Some tests are also performed using

a fixed demand pattern for the duration of the test. This
does not test the system’s ability to be adaptive, but
instead tested the ability of a population to learn the best
solution for a constant demand.

4 Results

4.1 Population Dynamics

Populations of cells consistently evolve solutions with
stable population sizes. Figure 6 shows experimental
results using the immediate shift in demand method with
1,000 new requests being generated on average
throughout the network per time-step.

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1

50
1

10
01

15
01

20
01

25
01

30
01

35
01

40
01

45
01

50
01

55
01

60
01

65
01

70
01

Time

Average Number of New Requests
Population Size

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1

50
1

10
01

15
01

20
01

25
01

30
01

35
01

40
01

45
01

50
01

55
01

60
01

65
01

70
01

Time

Average Number of New Requests
Population Size

Figure 6: Population Size during 7,000 Time-steps

The population size stabilizes at around 1,100 cells
and an average of 87.83% of user requests are completed.
During an experiment, the number of cells usually varies
greatly during the first 1,000 time-steps but then
stabilizes for the remainder of the tests, even as demand

patterns continues to be reassigned every 500 steps. The
average population size of 1,100 is a reasonable number
of cells to handle the 1,000 new requests created on
average at each time-step throughout the network. The
average population size is 10% greater than the number
of new requests. Completing 87.83% of user requests
with a stable population size proves the ability of cells to
optimize their performance.

4.2 Evolution versus Human Design

The CBO Algorithm is compared against several human
designed agents. Many designs for agents were
considered and tested. The best performing program is
one where cells move towards the food source and divide
when they are healthy (i.e., when there is food nearby).
The program for this behavior was ‘ If energy is greater
than 30, divide. Else, move towards the food chemical’ .

As shown in Table 2, during 50 trials using the
gradual shift in demand method, the evolved solutions
perform better than the human designed solution. The
evolved solution performs worse than human designed
solutions during the initial time-steps of the program, but
performs better after a few hundred time-steps.

Table 2: Average % Complete – Evolved vs. Human Design
(Average of 50 trials between t=5000 and t=7000)

 EVOLVED
SOLUTION

HUMAN DESIGNED
SOLUTION

AVERAGE %
COMPLETE

93.74% 42.00%

STANDARD
DEVIATION

0.07 0.03

An advantage that the evolved design has is that its

population is heterogeneous. The human design is a
homogeneous population of cells, all sharing the same
behavior. Although it is easy to imagine cell programs
that might work efficiently, it would be hard for a human
designer to create a diverse population that can work
collectively to allocate resources. In the evolved solution,
certain cell groups evolve to play diverse roles. Some
cells might be greedy (always following the database
chemical), while others might be lazy (only following the
database chemical when they are running out of energy).
Also, some cells may even help the overall system’s
effectiveness by moving away from the database
chemical. This could possibly help the population spread
itself out in the network instead of cells clustering where
demand is strong.

Planned heterogeneity could be tested by hard-coding
groups of human designed cells. However, it would be
difficult to determine how many roles are required, the
proportions of cells in each role and specific thresholds
each role should have in their programs. This type of
design would probably have to be ‘manually evolved’
through sample runs and would not be adaptive to new

types of networks and demand patterns. The benefit of
naturally heterogeneous systems is discussed by Kephart
et al. (1980) in their studies of computational ecosystems.
They found that heterogeneity could create stability and
that trying to design too much sophistication at the agent
level lead to oscillations and chaos.

4.3 Adaptation

The adaptability of cell populations is tested by
monitoring performance when patterns of user demand
are shifted. The three methods for shifting demand
mentioned in Section 3.2.2 are used for comparisons.
The anticipated outcome was that the immediate,
simultaneous shift in demand would have the worst
performance, the gradual shift better, and no shift in
demand would be the best.

The rationale for the anticipated result is as follows.
An immediate shift in demand would require that cells be
the most adaptive and respond to a change in demand as
quickly as possible. A gradual demand shift would
require the cells to become adaptive, but would be
slightly more forgiving if the population was slow to
adapt to the new pattern. Since the new demand pattern
takes effect gradually, cells would have a generous
amount of time to die off, divide or move to where
demand was growing.

If there were no shift in demand, thus a constant
demand pattern throughout the test, the cells would not
have to adapt their learned behavior at all. It was
assumed that this would be the easiest environment and
would result in having the shortest user wait times.

The results of these tests are surprising. The
anticipated comparison for gradual and immediate
demand shift is correct. However, the anticipated result
for tests with a constant demand level is false. The
results for 50 trials are listed in Table 3.

The populations existing in a network without a shift
in demand perform worse than both types of shifting
demand tests. During the first 1,000 time-steps, the
populations do perform better when there was a fixed
demand pattern. However, during the rest of the
experiments, they perform worse.

Table 3: Average % Complete – Different Methods for Shifting
Demand

(Average of 50 trials between t=5000 and t=7000)

 IMMEDIATE
SHIFT

GRADUAL
SHIFT

NO SHIFT
(CONSTANT
DEMAND)

AVERAGE %
COMPLETE

87.83% 93.74% 81.08%

STANDARD
DEVIATION

0.11 0.07 0.11

It seems that forcing cells to be adaptive help them to

eventually have better performance. Usually after a shift

in demand, there is a high level of cell death. After a
couple of hundred time-steps stability is again reached.
However, after several episodes of demand shifts, cells do
not have a performance drop during a demand shift
because they have evolved to be adaptive. It is possible
that mediocre groups of cells that perform poorly are able
to survive in an easier, constant environment whereas
they may be made extinct otherwise.

Average Percent of Requests Completed

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1000 2000 3000 4000 5000 6000 7000

Time

Immediate Shift Gradual Shift No Shift

Figure 7: Comparison of Types of Shift in Demand

Figure 7 shows the average performance of the
populations throughout different time-periods of the
experiments. Cells in an easier environment only evolve
to have acceptable performance, whereas cells in a
constantly changing environment have to compete and
find a new energy source every 500 time-steps. This
competition may force them to evolve better solutions,
which not only improve individual cell performance, but
also the performance of the population.

5 Conclusions and future work

The goal of this research is to test the capabilities of a
Cell Based Optimization algorithm at solving problems
in an Information Ecosystem domain. Motivation for this
work is to better understand bottom-up systems design
and emergent behaviors in complex decentralized
systems. The CBO algorithm uses cell-like functions and
reactions to simulated chemicals in an artificial
ecosystem. Cartesian Genetic Programming is used for
genetic representation. The Cell Based Optimization
algorithm is able to demonstrate successful group
allocation across a network, maximizing the processing
of simulated user requests.

Populations of randomly generated cells, or agents, are
able to collectively manage their population size and their
distribution throughout a network. This functionality is
evolved without having to specify fitness functions or
manage selection criteria. By making the treatment of
user requests a requirement for cell survival (i.e., their
energy source), the cells evolve to allocate themselves
according to changing patterns in user demand. Each

cell is autonomous and only has information about the
chemicals in their local environment. Although each cell
acts only to serve itself (i.e., survive), group functionality
emerges so that the populations of cells collectively
allocate themselves across the network. They also
produce a stable and robust solution that is adaptive to
changes in user demand patterns.

The experiments result in a heterogeneous population
with cells serving varied roles. Some cells are greedy and
always follow a signal for user demand. Other cells stay
in one place if there is enough requests for it to survive.
The evolved heterogeneous populations prove to be more
effective than populations created by hand. On average,
homogenous populations of human designed agents are
not able to complete half of the user requests at each
time-step. Their evolved heterogeneous counterparts
average completion percentages above 90 percent. It was
argued that it would be very difficult to design effective
heterogeneous populations by hand.

When testing the adaptability of the evolved solutions,
it is found that more challenging environments help to
evolve more effective populations of cells. Cells that
have to compete in an environment with changing user
demand patterns are more successful in the long run then
cells competing in static environments.

There are many extensions to this project that would
serve for interesting research. The comparisons of
evolved solutions to human designed cells could be
furthered by attempting to create human designed
heterogeneous populations for comparison. To prevent
‘manual evolution’ , some rules would need to be enforced
to define how much interaction a designer could have
with the system before designing the cells. Also, the
evolved populations could be studied in more depth to
more precisely identify roles that the cells played and
proportions of the populations in each group.

The cell-based model could be adapted to other
problems. It would be interesting to see how Cell Based
Optimization performs compared with more traditional
techniques and other nature-inspired techniques (e.g.,
Ant Colony Optimization).

Currently the cells in the model consume energy at
each time-step and when they divide. Additional
functionality could be added so that other activities cost
the cells energy. Examples include charging a cell for
migration, signaling, retrieving local information, etc.
This might make cells evolve to decrease the load on the
system while at the same time evolve to treat user
requests. An ecosystem model may be an interesting test-
bed for this type of multi-objective problem.

Acknowledgements

This work was supported by the Future Technologies
Group in BTexact and the DIET (Decentralised
Information Ecosystems Technologies) project (IST-
1999-10088) within the Universal Information
Ecosystems initiative of the Information Society
Technology Programme of the European Union. DIET is

also partly supported by the Enterprise Venturing
Programme of BTexact Technologies. The authors are
grateful to Paul Marrow, Cefn Hoile, Erwin Bonsma, and
Mark Shackleton for their useful comments and helpful
assistance throughout the work.

Bibliography

Agarwal, Pankaj (1995). The cell programming
language. Artificial Life, 2 (1):3777.

Bayardo, R. J., Bohrer, W., Bric, R. et al. Infosleuth:
Agent-based semantic integration of information in open
and dynamic environments. In: ACM SIGMOD, pages
195—206, 1997.

Chavez A., Moukas A., Maes P. (1997) Challenger: A
Multi-Agent System for Distributed Resource Allocation,
In: Proceedings of the First International Conference on
Autonomous Agents, Marina Del Ray, CA.

Dorigo M., Gambardella, L.M. (1997). Ant Colony
System: A Cooperative Learning Approach to the
Traveling Salesman Problem. IEEE Transactions on
Evolutionary Computation. 1, 53—66.

Dorigo, M. Di Caro, G. (1999). The Ant Colony
Optimization MetaHeuristic, in: D. Corne, M. Dorigo
and F. Glover, eds, New Ideas in Optimization, McGraw-
Hill.

Fleischer, Kurt and Barr, Alan H. (1992) A simulation
testbed for the study of multicellular development: The
multiple mechanisms of morphogenesis. In C. Langton
(ed), Artificial Life III, London: Addison-Wesley, pp.
389-416.

Hoile, C., Wang, F., Bonsma, E., and Marrow, P.
(2002) Core specification and experiments in DIET: a
decentralised ecosystem-inspired mobile agent system In:
Proceedings of the 1st International Conference on
Autonomous Agents and Multi-Agent Systems,
AAMAS2002, Bologna, Italy.

Keller, E. and Segel, L. (1970). Initiation of slime
mold aggregation viewed as an instability, Journal of
Theoretical Biology. 26, pp. 399-415.

Kephart, J. O., Hogg, Tag, and Huberman, Bernardo
A. (1989). Dynamics of computational ecosystems.
Physical Review A, 40.

Koza, John R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Marrow, P., Koubarakis, M., van Lengen, R.H.,
Valverde-Albacete, F., et al. (2001). Agents in
Decentralised Information Ecosytems: the DIET
Approach, Proceedings of the AISB’01 Symposium on
Information Agents for Electronic Commerce. York, UK.
pp. 109-117.

Menczer, F. and Monge, A. E. (1999). Scalable web
search by adaptive online agents: An infospiders case
study. In Intelligent Information Agents. Springer.

Miller, Julian and Thomson, Peter (2000). Cartesian
Genetic Programming. In R. Poli, J.F. Miller, W.
Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C.
Fogarty (eds), Proceedings of the 3rd International
Conference on Genetic Programming (EuroGP2000),
Lecture Notes in Computer Science, Berlin: Springer-
Verlag, Vol. 1802, pp. 15-17.

Moukas, A. (1996) Amalthaea: information discovery
and filtering using a multiagent evolving ecosystem. In:
Proceedings of PAAM96.

Nakagaki, T.; Yamada, H.; Tóth, Á. (2000).
Intelligence: Maze-solving by an amoeboid organism,
Nature 407, 470.

Pulidas, S, Towsley D., and Stankovic, J.A. (1988).
Imbedding gradient estimators in load balancing
algorithms. In 8th International Conference on
Distributed Computing Systems, pp. 482—490.

Ray, Thomas S. (1994). An evolutionary approach to
synthetic biology: Zen and the art of creating life.
Artificial Life, 1(1/2), pp. 179-209.

Resnick, Mitchel (1994). Turtles, Termites, and
Traffic Jams: Explorations in Massively Parallel
Microworlds. Cambridge, MA: MIT Press.

Rothermich, J. (2002). From Multicellularity to Cell
Based Optimization: Studying the Cooperative
Capabilities of Evolvable Cells. MSc Thesis. University
of Birmingham, UK.

Rothermich, J., Miller, J. (2002). Studying the
Emergence of Multicellularity with Cartesian Genetic
Programming in Artificial Life. Proceedings of the UK
Workshop on Computational Intelligence (UKCI-02),
Birmingham, UK.

Schaerf, A., Shoham, Y., and Tennenholtz, M.
(1995). Adaptive load balancing: A study in multi-agent
learning. Artificial Intelligence Research 2, 475—500.

Vassilev, Vesselin K. and Miller, Julian F. (2000) The
advantages of Landscape Neutrality in Digital Circuit
Evolution. In J.F. Miller , A. Thompson, P. Thomson,
and T. Fogarty (eds), Proceedings of the 3rd
International Conference on Evolvable Systems: From
Biology to Hardware (ICES2000), Lecture Notes in
Computer Science, Berlin: Springer-Verlag, Vol. 1801,
pp. 252-263.

Yu, Tina and Miller Julian F. (2001) Neutrality and
Evolvability of a Boolean Function Landscape. In J.F.
Miller, M. Tomassini, P. L. Lanzi, C. Ryan, W. Langdon
(eds), Proceedings of the 4th International Conference
on Genetic Programming (EuroGP2001), Lecture Notes
in Computer Science, Berlin: Springer-Verlag, Vol.
2038, pp. 204-217.

