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Abstract Structure-based virtual screening is a technology increasingly used in drug dis-
covery. Although successful at estimating binding modes for input ligands, these
technologies are less successful at ranking true hits correctly by binding free en-
ergy. This chapter presents the automated removal of false positives from virtual
hit sets, by evolving a post docking filter using Cartesian Genetic Programming.
We also investigate characteristics of CGP for this problem and confirm the ab-
sence of bloat and the usefulness of neutral drift.

Keywords: Cartesian Genetic Programming, Molecular Docking Prediction, Virtual Screen-
ing, Machine Learning, Genetic Programming, Evolutionary Algorithms, Neutral
Evolution

1. Introduction
In this chapter we present the application of Cartesian Genetic Programming

(CGP) to the real-world problem of predicting whether small molecules known
as ligands will bind to defined target molecules. We have found CGP to be
effective for this problem and it is currently in use in a commercial company.
In addition to presenting a successful GP application we have investigated em-
pirically a number of methodological issues that affect the performance and
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characteristics of CGP. We have found, in accordance with previous studies of
CGP on other problems, that neutral drift (see section 2) in the genotype can be
highly beneficial. In addition, unlike some other forms of Genetic Programming
we see very little bloat (even though we use many thousands of generations).
The chapter consists of eight sections. In section 2 we describe the Cartesian
Genetic Programming method and discuss some of its characteristics (some of
which led us to adopt the technique). In section 3 we describe the ligand dock-
ing problem and how we implemented a CGP system for it. In section 4 we
performed a large number of experiments to find optimum parameter settings
and investigate how they influence the behaviour of CGP. In section 5 we exam-
ine empirically the relative performance and behaviour of an algorithm which
utilizes neutral drift with one that doesn’t. In section 6 we discuss the evolved
post-docking filters and how we selected the best candidates using seeded li-
braries. In section 7 we examine the evolved filters on real data rather than
idealised test sets. We end the chapter with our conclusions in section 8.

2. Cartesian Genetic Programming
Cartesian Genetic Programming (Miller and Thomson, 2000) is a graph

based form of Genetic Programming that was developed from a representation
for evolving digital circuits (Miller et al., 1997, Miller, 1999). In essence, it is
characterized by its encoding of a graph as a string of integers that represent
the functions and connections between graph nodes, and program inputs and
outputs. This gives it great generality so that it can represent neural networks,
programs, circuits, and many other computational structures. Although, in
general it is capable of representing directed multigraphs, it has so far only
been used to represent directed acyclic graphs. It has a number of features that
are distinctive compared with other forms of Genetic Programming. Foremost
among these is that the genotype can encode a non-connected graph (one in
which it is not possible to walk between all pairs of nodes by following directed
links). This means that it uses a many-to-one genotype-phenotype mapping
to produce the graph (or program) that is evaluated. The genetic material that
is not utilised in the phenotype is analogous to junk DNA. As we will see,
mutations will allow the activation of this redundant code or de-activation of it.
Another feature is the ease with which it is able to handle problems involving
multiple outputs. Graphs are attractive representations for programs as they are
more compact than the more usual tree representation since subgraphs can be
used more than once.

CGP has been applied to a growing number of domains and problems: digital
circuit design (Miller et al., 2000a, Miller et al., 2000b), digital filter design (
Miller, 1999), image processing (Sekanina, 2004), artificial life (Rothermich
and Miller, 2002), bio-inspired developmental models (Miller and Thomson,
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Figure 1.1. General form of Cartesian Program for an n input m-output function. There are
three user-defined parameters: number of rows (r), number of columns (c) and levels-back (see
text). Each node has a set of ��� connection genes (according to the arity of the function) and a
function gene � � which defines the nodes’s function from a look-up table of available functions.
On the far left are seen the program inputs or terminals and on the far right the program output
connections ���
2003 Miller, 2003, Miller and Banzhaf, 2003), evolutionary art (Ashmore,
2000) and has been adopted within new evolutionary techniques cell-based
Optimization (Rothermich et al., 2003) and Social Programming (Voss, 2003,
Voss and James C. Howland, 2003).

In its original formulation CGP was represented as a directed Cartesian grid
of nodes in which nodes were arranged in layers (rows) and it was necessary
to specify the number of nodes in each row and the number of columns. The
nodes in each column were not allowed to be connected together (rather like a
multilayer perceptron neural network). In addition an additional parameter was
introduced called level-back which defined how many columns back a node in
a particular column could connect to. The program inputs were arranged in an
“input layer” on the left of the array of nodes. This is shown in figure 1.1

It is important to note that in many implementations of CGP (including this
one) the number of rows (r) is set to one. In this case the number of columns
(c) becomes the maximum allowed number of nodes (user defined). Also the
parameter levels-back can be chosen to be any integer from one (in which case,
nodes can only connect to the previous layer) to the maximum number of nodes
(in which case a node can connect to any previous node). It should be noted
that the output genes can be dispensed with by choosing the program outputs to
be taken from the m rightmost consecutive nodes (when only one row is used).
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The Cartesian genotype (shown below) is a string of integers. 	�
 denotes in
general a set of connection points that the inputs to the node are connected. Each
node also has a function, �

 chosen from a list of available functions (defined by
the user). Sometimes it happens that the node functions in the function list have
different arities (so the cardinality of 	�
 varies). Usually this is handled (as in
this work) by setting the node arity to be the maximum arity that appears in the
function list. Nodes with functions that require less inputs than the maximum
ignore the extra inputs.

	�����������	 � ��� � ����������	������ � ��������� ��� ��� ��� ������� � ��!
If the graphs encoded by the Cartesian genotype are directed then the range

of allowed alleles for 	 
 are restricted so that nodes can only have their inputs
connected to either program inputs or nodes from a previous (left) column.
Function values are chosen from the set of available functions. Point mutation
consists of choosing genes at random and altering the allele to another value
provided it conforms to the above restrictions. The number of genes that can
be mutated is chosen by the user (usually defined as a percentage of the total
number of genes in the genotype). Although the use of crossover is not ruled
out, most implementations of CGP (including this one) only use point mutation.

We emphasize that there is no requirement in CGP that all nodes defined in the
genotype are actually used (i.e. have their output used in the path from program
output to input). This means that there is a many-one genotype phenotype
mapping. Although the genotype is of fixed size the phenotype (the program)
can have any size up to the maximum number of nodes that are representable in
the genotype.It should also be observed that although a particular genotype may
have a number of such redundant nodes they cannot be regarded as purely non-
coding genes, since mutation may alter genes “downstream” of their position
that causes them to be activated and code for something in the phenotype,
similarly, formerly active genes can be deactivated by mutation.

When Cartesian genotypes are initialised one finds that many of the nodes are
inactive. In many CGP implementations on various problems it is often found
that this figure changes relatively little. Thus it is clear that during evolution
many mutations have no effect on the phenotype (and hence do not change the
fitness of the genotype). We refer genotypes with the same fitness as being
neutral with respect to each other. A number of studies (mainly on Boolean
problems) have shown that the constant genetic change that happens while the
best population fitness remains fixed is very advantageous for search (Miller
and Thomson, 2000, Vassilev and Miller, 2000, Yu and Miller, 2001, Yu and
Miller, 2002). In the results section of this chapter we will show that such
neutral search is also highly beneficial for the ligand docking problem.

To date no work on CGP has required any action to deal with bloat. Bloat is
not observed even when enormous genotypes are allowed. Miller investigated (
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Miller, 2001) this phenonmenon in CGP and found it to be intimately connected
with the presence of genes that can be activated or deactivated. He argued that
when the fitness of genotypes is high it becomes more likely that equally good
genotypes will be favourably selected. In tree-based GP models most equally
good phenotypes differ from one another in useless (bloated) code sections,
and they will be strongly selected for when fit. This, unfortunately, propagates
the spread of such useless code but paradoxically compresses the useful code (
Nordin and Banzhaf, 1995). On the other hand, in CGP, the increased proportion
of genetically different but phenotypically identical code is able to exist without
harm (i.e. it does not have to be processed as it is not in the phenotype). It is as
if the bloat can exist in the form of genetically redundant code that resides in
the genotype (but bounded by the fixed genotype size) but not in the phenotype.
This has the side effect of reducing the size of the phenotype without requiring
any parsimony pressure.

Evolutionary Algorithm
The evolutionary algorithm used for all experiments is that recommended

in Miller and Thomson, 2000. It is a simplified (1+4) Evolution Strategy (
Schwefel, 1965) for evolutionary search, i.e. one parent with 4 offspring (pop-
ulation size 5). The algorithm is described as follows:

1 Generate initial population of 5 individuals randomly;

2 Evaluate fitness for each individual in the population;

3 Select the best of the 5 in the population as the winner;

4 Carry out point-wise mutation on the winning parent to generate 4 off-
spring;

5 Construct a new generation with the winner and its 4 offspring;

6 Select a winner from the current population using the following rules:

(a) If there are offspring that have a better fitness than the parent has,
the best offspring becomes the winner.

(b) Otherwise, if there are offspring which have the same fitness as
the parent then one is randomly selected and becomes the winner
(NDEA)

(c) else the parent remains the winner.

7 Go to step 4 unless the maximum number of generations has reached.

The evolutionary strategy can be mistaken for a form of hillcimbing. How-
ever it should be remembered that the application of the mutation operator
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causes a sampling of a whole distribution of phenotypes. A single gene change
can cause an enormous change in the phenotype, however when the genotype is
quite fit, in most cases it will only cause little change (as large change is likely
to be deleterious). Thus we can see that the genotype representation in CGP
allows a very simple mutation operator to sample a large range of phenotypes.
If the neutral drift is not allowed in selection of the genotype to be promoted
to the next generation, the step emphasized (NDEA - neutral drift evolution-
ary algorithm) is removed. We refer to such an algorithm as simply an EA.
If this is done, the only way a genotype can supplant its parent is by having a
superior fitness. Some have argued that allowing neutral drift is equivalent to
using a higher mutation rate in an EA (Knowles and Watson, 2002). In results
later we show empirically that this is not the case for the problem studied here,
this accords with previous work reported on Boolean problems (Yu and Miller,
2001).

In this chapter, we present evidence later, that shows that fixing the output
gene to be the rightmost node is sometimes advantageous. This accords with
findings on other problems (Yu and Miller, 2001, Yu and Miller, 2002). It is
important to note that CGP is continuing to develop and recently a form of
automatically defined functions has been implemented that promises to make
the technique more powerful (Walker and Miller, 2004).

3. Docking
Structure-based virtual screening (Lyne, 2002) is an increasingly important

technology in the hit identification (identification of compounds that are poten-
tially useful as drugs) and lead optimisation (process of refining the chemical
structure of a hit to improve its drug characteristics) phases of drug discov-
ery. The goal of structure-based virtual screening is to identify a set of small
molecules (ligands) that are predicted to bind to a defined target macromolecule
(protein or nucleic acid). Through the combination of fast molecular docking
algorithms, empirical scoring functions and affordable computer farms, it is
possible to virtually screen hundreds of thousands or even millions of ligands
in a relatively short time (a few days). The output from the docking calculation
is a prediction of the geometric binding conformation of each ligand along with
a score that represents the quality of fit for the binding site. Only a small frac-
tion of the top-scoring virtual hits (typically up to 1000) then are selected for
experimental assay validation. If successful, this virtual hit set will be signifi-
cantly enriched in bioactive molecules relative to a random selection and will
yield a number of diverse starting points for a medicinal chemistry ’hit-to-lead’
programme.

Although many factors contribute to the success of virtual screening, a critical
component is the scoring function employed by the docking search algorithm.
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Whilst reasonably effective at reproducing the binding geometries of known
ligands, empirical scores are less successful at ranking true hits correctly by
binding free energy. This is a natural consequence of the many approximations
made in the interests of high throughput and, as such, all virtual hit sets contain
false positives to a greater or lesser extent. Many of these false positives can
be removed manually by visual inspection of the predicted binding geometries
by an expert computational chemist, but this is a time consuming process.

There have been previous studies that used Genetic Algorithms to improve the
coefficients of the scoring function (Smith et al., 2003). Also Böhm (Stahl and
Böhm, 1998) developed an empirical postfilter for the docking program FlexX
using penalty functions. Here we present the results of our initial attempts to
apply Cartesian Genetic Programming techniques to automate the removal of
false positives from virtual hit sets.

Virtual Screening
At Vernalis rDock (Morley et al., 2004) and its predecessor RiboDock (

Afshar and Morley, 2004) were developed as docking platforms that can rapidly
screen millions of compounds against protein and RNA targets.

During docking rDock tries to minimise the total score: "$#&%'#&(�)+*," 
.- #&/ �10"2
.- # � (30 "2� /'45# � ( 
.- # where "6
.- #&/ � stands for the sum of all the intermolecular
scoring functions, " 
.- # � ( is the ligand intramolecular term and " � /745# � ( 
.- # is a
penalty term that considers the deviation from certain restraints, for instance
when part of the ligand is outside the docking cavity.

Using this score rDock searches for the best conformation for a given ligand
over a given docking site. At the end, rDock stores the ligands for which a
conformation with a low enough score has been found. These are the ligands
that will be considered virtual hits.

Filtering
Once all the hits are found, the value of the score is no longer meaningful.

The score is good enough to compare two different conformations of a given
ligand, but not good enough to accurately rank order different ligands.

rDock outputs the score and its constituents. rDock also outputs additional
descriptors for both the ligand and the target docking site such as molecular
weight, number of aromatic rings, charge, number of atoms, etc., that are not
used directly during docking. This information is used in an ad hoc manner by
the computational chemists to filter out manually the virtual hits, often on a per-
target basis, for example to ensure a desired balance between polar and apolar
interaction scores. We have explored the use of Genetic Programming tech-
niques to automatically evolve more complex, target-independent post-docking
filters (Garmendia-Doval et al., 2003).
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Implementation
In our experiments we used a single row of 200 nodes. We chose the levels-

back parameter to be 100 and we counted the input variables as the first nodes.
All nodes have three inputs and one output. So if their true arity is lower, the
extra inputs are ignored. The operations implemented can be seen in table 1.1.

The input to the program is the data returned by rDock. There are components
to "2
.- #&/ � , "6
8- # � ( , and "2� /749# � ( 
8- # , ligand descriptors and docking site descriptors.
Some of these descriptors are explained in detail in table 1.2.

Apart from the input variables, there is also a pool of 15 constants introduced
as program inputs. Each time the CGP is run, 13 of them will be created at
random. The other 2 are the constants 0.0 and 1.0. A random constant is equal
to :<;�=�>@? where a is a float (with just one decimal place) number between -10
and 10 and b is an integer between -5 and 5.

In total there were 66 input variables, although a given filter did not have to
use all of them. On average 10 to 15 variables were used by individual filters.

Training Set
We assembled a set of 163 targets, such that for each of them there is a

structure available of the target and of a native ligand, a compound which is
experimentally known to dock into that target.

Each of the 163 ligands have been docked against each of the targets. If the
scoring function used in docking were perfect, then the lowest (best) score for
each target would be obtained for the native ligand bound.

As our current ability to calculate physical properties is quite limited, the
native ligand only ranks first in a few cases. Therefore, this cross-docking set
contains a large number of false positives. These can be used to drive a genetic
program to evolve appropriate filters based on various calculated properties.

From the targets for which the corresponding native ligand ranks in the 9th
position or higher, 30 were chosen at random. The training set is then these
30 targets, where the native ligands are considered hits and the ligands with a
higher rank are considered misses.

Fitness Function
The CGP system implemented evolves numerical functions. For each input

(i.e., docking score components of a given ligand over a given docking site,
together with the ligand and docking site descriptors), a float number is returned.
It was decided to interpret these numbers in the following manner:�3ACB represents a hit�3D$EFB represents a miss

For each protein in the training set there is one hit (native ligand) and a list
of size between 0 and 8 with misses (ligands that score better than the native
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Name #Args DescriptionG 2 AdditionH 2 SubtractionI 2 MultiplicationJ
2 K�L&M@NPO@QSR7TUE V O if W R�W�ACB�X B�B�B�B�B�YO J R otherwiseZ\[�]
1

Z\[�] NPO T^E V B if W O_W�ACB�X B�B�B�B�B�YZ\[�] N9W O_W T otherwise`ba c 1 `'a�c NPO TdEfe B if O�A H$g B�B`'a�c N g B�BhT if O�D g B�B`'a�c NPO T otherwise

if 3 Li�jNPO@Q�R�QSklTdE V R if O�DCBk otherwise
Random constant 0 The first time this command is called for a given node, it

will create a new random constant. That remains the value
of the node for the rest of the program, unless a mutation
operator changes the operation of the node.

Table 1.1. Operators

ligand). The fitness function counts the number of proteins for which the hit
was recognised as hit ( �nmo> ) and at least

�� of the misses were recognised as
misses ( �qpr*s> ).

4. Experiments investigating CGP behaviour with
parameter variation

For all the following experiments, the results are the average of 100 runs.
Every 500 generations the best individual and its program size was stored. The
program size is understood as the phenotype size, i.e., the number of nodes, in-
cluding the input variables, that are present in the function/program represented
by the genotype. We are using the NDEA version of the evolutionary strategy
discussed in section 2.

Genome Sizes
Figure 1.2 is a comparison of results with different genome sizes. For all of

them, the levels-back parameter was set equal to the genome size.
Examining the plot of average best of population fitness versus number of

generations (Figure 1.3) we see that even after 10,000 generations the fitness is
still improving. More interestingly we see that the maximum allowed number
of nodes provides a good ordering of this behaviour: the larger the allowed
number of nodes the higher the average best fitness. However, it looks like
much larger genotypes would offer diminishing improvements over smaller,
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provided the allowed size is large enough. The growth in phenotype size is
fairly rapid initially but settles down to a very small growth. It should be noted
that even when 1000 active nodes are allowed the average best size eventually
settles at about 43, leaving 957 inactive nodes. Despite this enormous level
of redundancy in the genotype we find the evolutionary algorithm described is
very effective.

Levels-Back
When the levels-back parameter is varied we see that with low values (25

out of a possible 200) the performance of the algorithm is much poorer and the
program size is very much larger. Interestingly we find that intermediate values
of local graph connectivity give the best results (levels-back 75 and 100).

Output Node
In the implementation used for the docking problem, the output of the filter

was taken to be one of the CGP nodes taken at random. This output node could
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Figure 1.4. Comparison with/without output node: 50, 200

afterwards be mutated during the CGP run. Another option is to take always
the last node as the output node without possibility of mutating it, i.e., it is
taken out of the genome. A comparison of these two implementations was
done using for both of them with 200 nodes, 0.08 mutation rate and NDEA
algorithm. A mutation rate of 0.08 means that for every mutation operation,
each gene has a 0.08 probability of being mutated. With 200 nodes each one
represented by 4 genes (3 inputs and the operator), it means on average 64
genes will be mutated. The parameter levels-back was modified to be 50, 75,
100, 150 and 200. The results for 50 and 200 can be seen in Figure 1.4. It
is clear from the results that the performance of the evolutionary algorithm is
not greatly affected by whether the program has a fixed output node or whether
it is subject to evolution. However having no output gene appears to give
better results when the levels-back parameter is large. Even though there is
little difference in fitness improvement the average size of the best programs
is very different especially with smaller values of levels-back. The weakness
of the correlation between fitness improvement and the presence or absence of
an output gene was unexpected as it has been found that in Boolean function
search the performance is much more reliably good when the program output
is taken from the rightmost node. This is because it can sometimes happen by
chance that the best individual in the initial population has a small phenotype
length. This means that nearly all mutations affect redundant code thus leading
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to trapping in a sub-optimum. The output gene is unlikely to hit by mutation
and so sometimes one has to wait for many generations for a larger phenotype
to be created. The continuous nature of the data may be the reason why the
presence or absence of an output gene is of minor importance.

5. Experiments comparing NDEA vs. EA
In the next set of experiments (Figures 1.5) we compare the performance of

the evolutionary algorithm with and without neutral drift and also the behaviour
of both scenarios with varying amounts of mutation. It is immediately clear that
at mutation rates below 0.3 NDEA is superior to the EA. With high mutation
rates (>=0.3) the behaviour of the two algorithms is similar both in fitness and
program size. Fitness stagnates at about 12 and program size randomly varies
around 22 active nodes (out of 200). The behaviour of the NDEA when the
mutation rates are much lower is very different. Firstly we see a continuous
improvement in fitness with time which is still growing after 10,000 generations.
Secondly the improvement in fitness is accompanied by a steady growth in
program size. It is interesting that the optimal mutation rate also produces the
strongest growth in active code. The rate of code growth drops eventually. This
indicates that if evolution was continued longer the active code would stabilize
at about 60 nodes (for the best mutation rate). It is also noteworthy that the
program growth stabilizes much earlier without neutral drift and that there is
much less variation in program sizes (lower variance). The graphs show very
clearly that neutral drift is not equivalent to turning neutral drift off and allowing
higher mutation rates.

6. Application of NDEA over Docking
In the initial implementation of CGP for the docking problem, a series of

experiments were conducted in which system parameters such as the structure
of the matrix, mutation rate, etc. were varied, although not in such detail as
the experiments shown in sections 4 and 5. At that time it was not possible to
conduct very rigorous tests because of the severe time restrictions associated
with the business environment, although another reason was caused by this be-
ing a classification problem. The fitness function in the CGP implementation is
based on the result of applying the current filter on the training set. Since we are
considering a classification problem, our aim is to maximize the classification
accuracy over the test set. Our goal was not to find the global optimum for
the training set as this would have almost surely been equivalent to overfitting
and would have produced a filter that would have performed poorly over new
data. Because of this, once a system capable of finding good local optima
was identified, the system parameters were fixed to be the following: mutation
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Figure 1.5. Comparison of NDEA vs. EA

rate 0.08, genome size 200 nodes and levels-back 100. From the results of the
experiments described one can see that it was a good enough choice.

Test Set
The test set corresponded to the rest of the cross-docking matrix, i.e., the 133

proteins left after removing the 30 that were used for training. The reason for
the test set being so much larger than the training set was due to the fact that
only half of the matrix was available at the beginning of the project. Once the
other half was made available, it was added directly to the test set.

CGP was run several hundred times and the filters that performed best over
the test set were chosen. These were then further tested over our validation set.

Seeded Libraries
Seeded libraries are one of a number of methods that have been developed

to assess the performance of virtual screening programs. A seeded library for
a given target is a library of drug-like compounds that includes several native
ligands known to bind to that target. All the compounds are docked into the
given target using the docking platform. The output conformations are then
sorted by the score. The ability of the virtual screening software to distinguish
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Figure 1.6. Seeded Libraries

between the native ligands and the non native ones can then be measured,
typically by calculating the percentage of native ligands found in the top t�u .

We tested the best filters over four seeded libraries, and the most promising
was chosen. This filter can be seen in figure 1.7. The variables used by this
filter are described in table 1.2 and the results obtained in the training set and
the test set can be seen in table 1.3.

Figure 1.6 shows the top =�u (black), top v
u (dark gray) and top w
u (light
gray) completeness for these four seeded libraries, where completeness is de-
fined as the percentage of true actives retrieved in the slice. We had 10 na-
tive ligands for proteins Estrogen and Thymidine Kinase, and 17 for proteins
Thrombin and COX-2. The first column shows the results of rDock. The second
column shows the results of applying the figure 1.7 filter.

For Estrogen, there is not a great improvement using the filter, as rDock
already produces very good results and is therefore difficult to improve upon
them.

Thrombin shows a nice improvement as some of the native ligands that were
previously found on the top v
u are now found on the top =�u . Similarly for
COX-2, all the native ligands found before in the top v
u are now found in the
top =�u .
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Finally Thymidine Kinase gives the best results as more native ligands are
found in the top =�u ( x
>_u vs. y�>_u ), more in the top v
u ( z�>_u vs. {�>_u ) and
again more in the top w
u ( =�>@>_u vs. |�>_u ) where all the native ligands are
found.

Best Filter
There were several filters that worked well for the cross-docking matrix but

most of them did not generalise well for the seeded libraries. They either filtered
out native ligands or, most commonly, they filter almost nothing out. However,
we found the following filter to generalise quite well.

log(SCORE.INTRA.VDW.raw - 0.9913) *
exp(SCORE.INTER.AROM.narom *

exp(SCORE.INTER.POLAR.nhbd) * LIG POS CHG)
+ 684 *

if SCORE.INTER.REPUL.nhba D 0 then
LIG NEG CHG

else
SCORE.INTER.VDW.nrep / SITE PERC AROMATOMS

end
-
if (SCORE.INTER.POLAR.nhbd -

SCORE.INTRA.REPUL.raw + LIG TOT CHG ) > 0 then
SITE NLIPOC

else
exp(SITE NEG CHG) - log(LIG NHBD)

end

Figure 1.7. Best filter found to date

It should be emphasised that the cross-docking matrix is a quite different
experiment from the seeded libraries. The fact that this filter is able to filter
out true misses while maintaining most of the true hits in both experiments is
quite encouraging and is relatively safe to infer that somehow it has found some
general trends in the data.

Although it is difficult to understand exactly what the filter is doing, the filter
combines intermolecular score components (as used during docking) with both
protein and ligand properties in a chemically meaningful way. For example,
highly strained conformations (SCORE.INTRA.VDW.raw) and steric clashes
between ligand and target (SCORE.INTER.VDW.nrep) are more likely to be
rejected.

Finally it should also be noted that the only simplifications done over the
original filter output by the CGP program and this filter were replacing the
expression }h~j�$�7��>��\>@>
z
�@� for >���|@|�=�y and the expression ����|�>@>�;���>�����{
� for
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Table 1.2. Descriptions of the Variables used by the best filter
variables description
SCORE.INTRA.VDW.raw sum of the intraligand van der Waals forces
SCORE.INTRA.REPUL.raw sum of the intraligand repulsive polar contacts
SCORE.INTER.AROM.narom number of aromatic rings involve in aromatic inter-

actions
SCORE.INTER.POLAR.nhbd number of ligand hydrogen bond donors involved in

polar interactions
SCORE.INTER.REPUL.nhba number of ligand hydrogen bond acceptors involved

in repulsive polar interactions
SCORE.INTER.VDW.nrep number of ligand atoms with overall repulsive van

der Waals interactions (steric clash)
LIG NEG CHG sum of formal negative charges of the ligand
LIG NHBD number of hydrogen bond donors in ligand
LIG TOT CHG total formal charge of the ligand
SITE PERC AROMATOMS percentage of atoms that are aromatic in the target

site
SITE NLIPOC number of non-polar carbons in the site
SITE NEG CHG sum of formal negative charges of the site

Table 1.3. Results of Best Filter for training set and test set
Training Set

Correctly Incorrectly
Classified Classified

Native Ligands 28 2
Non-Native Ligands 36 21

Test Set
Native Ligands 89 44
Non-Native Ligands 1946 2417

{@z�x . Some parenthesis that were not necessary were also removed to make it
more readable. As reported in Miller, 2001, in all the programs found by CGP
for this problem, there was “either very weak program bloat or zero bloat”

7. Results with Real Data
All the previous results shown were obtained over idealised test sets used rou-

tinely to measure docking performance. As a final validation we have applied
the filter in figure 1.7 to real virtual screening data from docking campaigns
performed at Vernalis, specifically against an oncology target protein, HSP90.

From an initial docking library of around ��>@>@>@>@> compounds, a total of
around 40000 virtual hits were identified over several docking campaigns against
HSP90. Around 1500 of the virtual hits were selected by a computational
chemist for experimental assay using a variety of ad hoc post filters, and knowl-
edge and experience of the target protein, in a process taking around a week.
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Table 1.4. HSP90

Manual post- +GP post- Reduction
docking hits docking filter

rDock 39908 28374 H$g�� %
virtual hits

Compounds 1467 1409 H�� %
assayed

True 30 27 H YlB %
actives

Thirty of the assayed compounds were confirmed as real hits, in that they showed
significant activity against HSP90.

The filter shown in figure 1.7 was applied to the virtual hits (see Table 1.4)
and was able to remove 29% of the original unfiltered hits, whilst only removing
4% of the compounds manually selected for assay. Three of the true actives
were also removed.

The GP-derived filter therefore shows very good agreement with the manual
filtering process, in that the filter passes almost all of the original assayed
compounds, but is able to reduce automatically the initial size of the data set by
almost 30%. This provides further evidence that the filter is generalising across
docking targets quite distinct from those in the training and test sets.

The filter is currently being used and tested with each new docking cam-
paign, with very good results. It promises to be a useful additional tool in the
computational chemist’s armoury of post-docking filters.

8. Conclusions
Removal of false positives after structure-based virtual screening is a recog-

nised problem in the field. This chapter describes what we believe is the first
attempt at using Genetic Programming to evolve a post-docking filter automat-
ically. We found the simple 1+4 evolutionary strategy with neutral drift to be
very effective and also confirmed that for this real world problem, program
bloat was not a problem.

The cross docking matrix used for training and evolving post-docking filters
is quite different from the seeded libraries and the HSP90 data. The post-
docking filter chosen from the ones found by the GP platform is filtering out
consistently bad compounds in all cases, while retaining interesting hits. We
can say that it is generalising over the data. The HSP90 data is the first real
data on which the filter has been tested and the results are very promising. This
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filter is now being used as standard in all the projects in the company. Early
results confirm its usefulness.

The GP platform offers immediately a pragmatic, automated post-docking
filter for cleaning up virtual hit sets. It can be easily applied again for different
descriptors or scoring functions.

Longer-term the filters found may offer a way of “boot-strapping” docking
scoring function improvements, by identifying non-obvious, yet systematic,
defects in the scoring function.

This technique is also not specific to docking programs, and we plan to apply
it in the near future for other problems where a list of variables and descriptors
is available and there is a need for a generic filter.
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