
Chapter 2

Cartesian Genetic Programming

Julian F. Miller

2.1 Origins of CGP

Cartesian genetic programming grew from a method of evolving digital circuits de-

veloped by Miller et al. in 1997 [8]. However the term ‘Cartesian genetic program-

ming’ first appeared in 1999 [5] and was proposed as a general form of genetic

programming in 2000 [7]. It is called ‘Cartesian’ because it represents a program

using a two-dimensional grid of nodes (see Sect. 2.2).

2.2 General Form of CGP

In CGP, programs are represented in the form of directed acyclic graphs. These

graphs are represented as a two-dimensional grid of computational nodes. The genes

that make up the genotype in CGP are integers that represent where a node gets its

data, what operations the node performs on the data and where the output data re-

quired by the user is to be obtained. When the genotype is decoded, some nodes may

be ignored. This happens when node outputs are not used in the calculation of out-

put data. When this happens, we refer to the nodes and their genes as ‘non-coding’.

We call the program that results from the decoding of a genotype a phenotype. The

genotype in CGP has a fixed length. However, the size of the phenotype (in terms of

the number of computational nodes) can be anything from zero nodes to the number

of nodes defined in the genotype. A phenotype would have zero nodes if all the pro-

gram outputs were directly connected to program inputs. A phenotype would have

the same number of nodes as defined in the genotype when every node in the graph

was required. The genotype–phenotype mapping used in CGP is one of its defining

characteristics.

The types of computational node functions used in CGP are decided by the user

and are listed in a function look-up table. In CGP, each node in the directed graph

J.F. Miller (ed.), Cartesian Genetic Programming, Natural Computing Series,

DOI 10.1007/978-3-642-17310-3 2, © Springer-Verlag Berlin Heidelberg 2011

17

18 Julian F. Miller

represents a particular function and is encoded by a number of genes. One gene is

the address of the computational node function in the function look-up table. We

call this a function gene. The remaining node genes say where the node gets its data

from. These genes represent addresses in a data structure (typically an array). We

call these connection genes. Nodes take their inputs in a feed-forward manner from

either the output of nodes in a previous column or from a program input (which is

sometimes called a terminal). The number of connection genes a node has is chosen

to be the maximum number of inputs (often called the arity) that any function in

the function look-up table has. The program data inputs are given the absolute data

addresses 0 to ni minus 1 where ni is the number of program inputs. The data out-

puts of nodes in the genotype are given addresses sequentially, column by column,

starting from ni to ni + Ln −1, where Ln is the user-determined upper bound of the

number of nodes. The general form of a Cartesian genetic program is shown in Fig.

2.1.

If the problem requires no program outputs, then no integers are added to the

end of the genotype. In general, there may be a number of output genes (Oi) which

specify where the program outputs are taken from. Each of these is an address of

a node where the program output data is taken from. Nodes in columns cannot be

connected to each other. The graph is directed and feed-forward; this means that a

node may only have its inputs connected to either input data or the output of a node

in a previous column. The structure of the genotype is seen below the schematic

in Fig. 2.1. All node function genes fi are integer addresses in a look-up table of

functions. All connection genesCi j are data addresses and are integers taking values

between 0 and the address of the node at the bottom of the previous column of nodes.

CGP has three parameters that are chosen by the user. These are the number

of columns, the number of rows and levels-back. These are denoted by nc, nr and

l, respectively. The product of the first two parameters determine the maximum

number of computational nodes allowed: Ln = ncnr. The parameter l controls the

connectivity of the graph encoded. Levels-back constrains which columns a node

can get its inputs from. If l = 1, a node can get its inputs only from a node in the
column on its immediate left or from a primary input. If l = 2, a node can have

its inputs connected to the outputs of any nodes in the immediate left two columns

of nodes or a primary input. If one wishes to allow nodes to connect to any nodes

on their left, then l = nc. Varying these parameters can result in various kinds of

graph topologies. Choosing the number of columns to be small and the number

of rows to be large results in graphs that are tall and thin. Choosing the number

of columns to be large and the number of rows to be small results in short, wide

graphs. Choosing levels-back to be one produces highly layered graphs in which

calculations are carried out column by column. An important special case of these

three parameters occurs when the number of rows is chosen to be one and levels-

back is set to be the number of columns. In this case the genotype can represent

any bounded directed graph where the upper bound is determined by the number of

columns.

As we saw briefly in Chap. 1, one of the benefits of a graph-based representation

of a program is that graphs, by definition, allow the implicit reuse of nodes, as a

2 Cartesian Genetic Programming 19

Fig. 2.1 General form of CGP. It is a grid of nodes whose functions are chosen from a set of

primitive functions. The grid has nc columns and nr rows. The number of program inputs is ni and

the number of program outputs is no. Each node is assumed to take as many inputs as the maximum

function arity a. Every data input and node output is labeled consecutively (starting at 0), which

gives it a unique data address which specifies where the input data or node output value can be

accessed (shown in the figure on the outputs of inputs and nodes).

node can be connected to the output of any previous node in the graph. In addition,

CGP can represent programs having an arbitrary number of outputs. In Sect. 2.7,

we will discuss the advantages of non-coding genes. This gives CGP a number of

advantages over tree-based GP representations.

2.3 Allelic Constraints

In the previous section, we discussed the integer-based CGP genotype representa-

tion. The values that genes can take (i.e. alleles) are highly constrained in CGP.

When genotypes are initialized or mutated, these constraints should be obeyed.

First of all, the alleles of function genes fi must take valid address values in

the look-up table of primitive functions. Let n f represent the number of allowed

primitive node functions. Then fi must obey

0≤ fi ≤ n f . (2.1)

Consider a node in column j. The values taken by the connection genesCi j of all

nodes in column j are as follows. If j ≥ l,

ni +(j− l)nr ≤Ci j ≤ ni + jnr. (2.2)

20 Julian F. Miller

If j < l,

0≤Ci j ≤ ni + jnr. (2.3)

Output genes Oi can connect to any node or input:

0≤ Oi < ni +Ln. (2.4)

2.4 Examples

CGP can represent many different kinds of computational structures. In this section,

we discuss three examples of this. The first example is where a CGP genotype en-

codes a digital circuit. In the second example, a CGP genotype represents a set of

mathematical equations. In the third example, a CGP genotype represents a picture.

In the first example, the type of data input is a single bit; in the second, it is real

numbers. In the art example, it is unsigned eight-bit numbers.

2.4.1 A Digital Circuit

The evolved genotype shown in Fig. 2.2 arose using CGP genotype parameters

nc = 10, nr = 1 and l = 10. It represents a digital combinational circuit called a two-
bit parallel multiplier. It multiplies two two-bit numbers together, so it requires four

inputs and four outputs. There are four primitive functions in the function set (logic

gates). Let the first and second inputs to these gates be a and b. Then the four func-

tions (with the function gene in parentheses) are AND(a,b)(0), AND(a,NOT(b))(1),

XOR(a,b)(2) and OR(a,b)(3). One can see in Fig. 2.2 that two nodes (with labels 6

and 10) are not used, since no circuit output requires them. These are non-coding

nodes. They are shown in grey.

Figure 2.2 shows a CGP genotype and the corresponding phenotype.

2.4.2 Mathematical Equations

Suppose that the functions of nodes can be chosen from the arithmetic operations

plus, minus, multiply and divide. We have allocated the function genes as follows.

Plus is represented by the function gene being equal to zero, minus is represented

2 Cartesian Genetic Programming 21

Fig. 2.2 A CGP genotype and corresponding phenotype for a two-bit multiplier circuit. The under-

lined genes in the genotype encode the function of each node. The function look-up table is AND

(0), AND with one input inverted (1), XOR (2) and OR (3). The addresses are shown underneath

each program input and node in the genotype and phenotype. The inactive areas of the genotype

and phenotype are shown in grey dashes (nodes 6 and 10).

by one, multiply by two and divide by three. Let us suppose that our program has

two real-valued inputs, which symbolically we denote by x0 and x1. Let us suppose

that we need four program outputs, which we denote OA, OB, OC and OD. We have

chosen the number of columns nc to be three and the number of rows nr to be

two. In this example, assume that levels-back, l is two. An example genotype and a

schematic of the phenotype are shown in Fig. 2.3. The phenotype is the following

set of equations:

OA = x0+ x1

OB = x0 ∗ x1

OC =
x0 ∗ x1

x02− x1

OD = x0
2. (2.5)

22 Julian F. Miller

Fig. 2.3 A CGP genotype and corresponding schematic phenotype for a set of four mathematical

equations. The underlined genes in the genotype encode the function of each node. The function

look-up table is add (0), subtract (1), multiply (2) and divide (3). The addresses are shown un-

derneath each program input and node in the genotype and phenotype. The inactive areas of the

genotype and phenotype are shown in grey dashes (node 6).

2.4.3 Art

A simple way to generate pictures using CGP is to allow the integer pixel Cartesian

coordinates to be the inputs to a CGP genotype. Three outputs can then be allowed

which will be used to determine the red, green and blue components of the pixel’s

colour. The CGP outputs have to be mapped in some way so that they only take

values between 0 and 255, so that valid pixel colours are defined. A CGP program

is executed for all the pixel coordinates defining a two-dimensional region. In this

way, a picture will be produced. In Fig. 2.4, a genotype is shown with a correspond-

ing schematic of the phenotype. The set of function genes and corresponding node

functions are shown in Table 2.1. In a later chapter, ways of developing art using

CGP will be considered in detail.

The functions in Table 2.1 have been carefully chosen so that they will return

an integer value between 0 and 255 when the inputs (Cartesian coordinates) x and

y are both between 0 and 255. The evolved genotype shown in Fig. 2.4 uses only

four function genes: 5, 9, 6 and 13. We denote the outputs of nodes by gi, where i is

the output address of the node. The red, green and blue channels of the pixel values

(denoted r, g, b) are given as below:

2 Cartesian Genetic Programming 23

Table 2.1 Primitive function set used in art example

Function gene Function definition

0 x

1 y

2
√

x + y

3
√

| x − y |

4 255(| sin(2π
255

x) + cos(2π
255

y) |)/2

5 255(| cos(2π
255

x) + sin(2π
255

y) |)/2

6 255(| cos(3π
255

x) + sin(2π
255

y) |)/2

7 exp(x + y) (mod 256)

8 | sinh(x + y) | (mod 256)

9 cosh(x + y) (mod 256)

10 255 | tanh(x + y) |

11 255(| sin(π
255

(x + y)) |

12 255(| cos(π
255

(x + y)) |

13 255(| tan(π
8∗255 (x + y)) |

14

√

x2 + y2

2

15 | x |y (mod 256)

16 | x + y | (mod 256)

17 | x − y | (mod 256)

18 xy/255

19

{

x y = 0
x/y y 6= 0

24 Julian F. Miller

Fig. 2.4 A CGP genotype and corresponding schematic phenotype for a program that defines a

picture. The underlined genes in the genotype encode the function of each node. The function

look-up table is given in Table 2.1. The addresses are shown underneath each program input and

node in the genotype and phenotype. The inactive areas of the genotype and phenotype are shown

in grey dashes (node 6).

g2 = 255

(∣

∣

∣

∣

cos

(

2π

255
y

)

+ sin

(

2π

255
x

)∣

∣

∣

∣

)/

2,

g3 = 255

(∣

∣

∣

∣

cos

(

2π

255
g2

)

+ sin

(

2π

255
x

)∣

∣

∣

∣

)/

2,

g4 = cosh(2g3) (mod 256),

g5 = 255

(∣

∣

∣

∣

cos

(

2π

255
g3

)

+ sin

(

2π

255
g2

)∣

∣

∣

∣

)/

2,

r = g5,

g = g4,

b = g2. (2.6)

When these mathematical equations are executed for all 2562 pixel locations,

they produce the picture (the actual picture is in colour) shown in Fig. 2.5.

2.5 Decoding a CGP Genotype

So far, we have illustrated the genotype-decoding process in a diagrammatic way.

However, the algorithmic process is recursive in nature and works from the output

genes first. The process begins by looking at which nodes are ‘activated’ by being

directly addressed by output genes. Then these nodes are examined to find out which

nodes they in turn require. A detailed example of this decoding process is shown in

Fig. 2.6.

It is important to observe that in the decoding process, non-coding nodes are not

processed, so that having non-coding genes presents little computational overhead.

2 Cartesian Genetic Programming 25

Fig. 2.5 Picture produced when the program encoded in the evolved genotype shown in Fig. 2.4 is

executed. It arose in the sixth generation. The user decides which genotype will be the next parent.

There are various ways that this decoding process can be implemented. One way

would be to do it recursively; another would be to determine which nodes are active

(in a recursive way) and record them for future use, and only process those. Proce-

dures 2.2 and 2.1 in the next section detail the latter. The possibility of improving

efficiency by stripping out non-coding instructions prior to phenotype evaluation

has also been suggested for Linear GP [1].

2.5.1 Algorithms for Decoding a CGP Genotype

In this section, we will present algorithmic procedures for decoding a CGP geno-

type. The algorithm has two main parts: the first is a procedure that determines how

many nodes are used and the addresses of those nodes. This is shown in Procedure

2.1. The second presents the input data to the nodes and calculates the outputs for a

single data input. We denote the maximum number of addresses in the CGP graph

by M = Ln + ni, the total number of genes in the genotype by Lg, the number of

genes in a node by nn, and the number of active or used nodes by nu.

In the procedure, a number of arrays are mentioned. Firstly, it takes the CGP

genotype stored in an array G[Lg] as an argument. It passes back as an argument an
array holding the addresses of the nodes in the genotype that are used. We denote

this by NP. It also returns how many nodes are used. Internally, it uses a Boolean

array holding whether any node is used, called NU [M]. This is initialized to FALSE.

An array NG is used to store the node genes for any particular node. It also assumes

that a function Arity(F) returns the arity of any function in the function set.
Once we have the information about which nodes are used, we can efficiently

decode the genotype G with some input data to find out what data the encoded pro-

26 Julian F. Miller

Fig. 2.6 The decoding procedure for a CGP genotype for the two-bit multiplier problem. (a) Output

A (oA) connects to the output of node 4; move to node 4. (b) Node 4 connects to the program inputs

0 and 2; therefore the output A is decoded. Move to output B. (c) Output B (oB) connects to the

output of node 9; move to node 9. (d) Node 9 connects to the output of nodes 5 and 7; move to

nodes 5 and 7. (e) Nodes 5 and 7 connect to the program inputs 0, 3, 1 and 2; therefore output

B is decoded. Move to output C. The procedure continues until output C (oC) and output D (oD)

are decoded (steps (f) to (h) and steps (i) to (j) respectively). When all outputs are decoded, the

genotype is fully decoded.

gram gives as an output. This procedure is shown in Procedure 2.2. It assumes that

input data is stored in an array DIN, and the particular item of that data that is being

used as input to the CGP genotype is item. The procedure returns the calculated

output data in an array O. Internally, it uses two arrays: o, which stores the calcu-

lated outputs of used nodes and in, which stores the input data being presented to

an individual node. The symbol g is the address in the genotype G of the first gene

in a node. The symbol n is the address of a node in the array NP. The procedure

assumes that a function NF implements the functions in the function look-up table.

The fitness function required for an evolution algorithm is given in Procedure

2.3. It is assumed that there is a procedure EvaluateCGP that, given the CGP cal-

2 Cartesian Genetic Programming 27

Procedure 2.1 Determining which nodes need to be processed

1: NodesToProcess(G,NP) // return the number of nodes to process
2: for all i such that 0≤ i < M do

3: NU [i] = FALSE

4: end for

5: for all i such that Lg −no ≤ i < Lg do

6: NU [G[i]] ← T RUE

7: end for

8: for all i such that M−1≥ i ≥ ni do // Find active nodes

9: if NU [i] ← T RUE then

10: index ← nn(i−ni)
11: for all j such that 0≤ j < nn do // store node genes in NG

12: NG[j] ← G[index+ j]
13: end for

14: for all j such that 0≤ j < Arity(NG[nn −1]) do

15: NU [NG[j]] ← T RUE

16: end for

17: end if

18: end for

19: nu = 0
20: for all j such that ni ≤ j < M do // store active node addresses in NP

21: if NU [j] = T RUE then

22: NP[nu] ← j

23: nu ← nu +1
24: end if

25: end for

26: return nu

Procedure 2.2 Decoding CGP to get the output

1: DecodeCGP(G,DIN,O,nu,NP, item)
2: for all i such that 0≤ i < ni do

3: o[i] ← DIN[item]
4: end for

5: for all j such that 0≤ j < nu do

6: n ← NP[j]−ni

7: g ← nnn

8: for all i such that 0≤ i < nn −1 do // store data needed by a node

9: in[i] ← o[G[g+ i]]
10: end for

11: f = G[g+nn −1] // get function gene of node
12: o[n+ni] = NF(in, f) // calculate output of node
13: end for

14: for all j such that 0≤ j < no do

15: O[j] ← o[G[Lg −no + j]]
16: end for

28 Julian F. Miller

culated outputs O and the desired program outputs DOUT , calculates the fitness of

the genotype fi for a single input data item. The procedure assumes that there are

N f c fitness cases that need to be considered. In digital-circuit evolution the usual

number of fitness cases is no2
ni . Note, however, that Procedure 2.1 only needs to be

executed once for a genotype, irrespective of the number of fitness cases.

Procedure 2.3 Calculating the fitness of a CGP genotype

1: FitnessCGP(G)
2: nu ← NodesToProcess(G,NP)
3: f it ← 0

4: for all i such that 0≤ i < N f c do

5: DecodeCGP(G,DIN,O,nu,NP, item)
6: fi = EvaluateCGP(O,DOUT, i)
7: f it ← f it + fi

8: end for

2.6 Evolution of CGP Genotypes

2.6.1 Mutation

The mutation operator used in CGP is a point mutation operator. In a point mutation,

an allele at a randomly chosen gene location is changed to another valid random

value (see Sect. 2.3). If a function gene is chosen for mutation, then a valid value is

the address of any function in the function set, whereas if an input gene is chosen

for mutation, then a valid value is the address of the output of any previous node

in the genotype or of any program input. Also, a valid value for a program output

gene is the address of the output of any node in the genotype or the address of

a program input. The number of genes in the genotype that can be mutated in a

single application of the mutation operator is defined by the user, and is normally

a percentage of the total number of genes in the genotype. We refer to the latter as

the mutation rate, and will use the symbol µr to represent it. Often one wants to

refer to the actual number of gene sites that could be mutated in a genotype of a

given length Lg. We give this quantity the symbol µg, so that µg = µrLg. We will

talk about suitable choices for the parameters µr and µg in Sect. 2.8.

An example of the point mutation operator is shown in Fig. 2.7, which highlights

how a small change in the genotype can sometimes produce a large change in the

phenotype.

2 Cartesian Genetic Programming 29

Fig. 2.7An example of the point mutation operator before and after it is applied to a CGP genotype,

and the corresponding phenotypes. A single point mutation occurs in the program output gene (oA),

changing the value from 6 to 7. This causes nodes 3 and 7 to become active, whilst making nodes

2, 5 and 6 inactive. The inactive areas are shown in grey dashes.

2.6.2 Recombination

Crossover operators have received relatively little attention in CGP. Originally, a

one-point crossover operator was used in CGP (similar to the n-point crossover in

genetic algorithms) but was found to be disruptive to the subgraphs within the chro-

mosome, and had a detrimental affect on the performance of CGP [5]. Some work

by Clegg et al. [2] has investigated crossover in CGP (and GP in general). Their

approach uses a floating-point crossover operator, similar to that found in evolu-

tionary programming, and also adds an extra layer of encoding to the genotype, in

which all genes are encoded as a floating-point number in the range [0,1]. A larger
population and tournament selection were also used instead of the (1+ 4) evolu-
tionary strategy normally used in CGP, to try and improve the population diversity.

30 Julian F. Miller

The results of the new approach appear promising when applied to two symbolic

regression problems, but further work is required on a range of problems in order to

assess its advantages [2]. Crossover has also been found to be useful in an image-

processing application as discussed in Sect. 6.4.3. Crossover operators (cone-based

crossover) have been devised for digital-circuit evolution (see Sect. 3.6.2). In situa-

tions where a CGP genotype is divided into a collection of chromosomes, crossover

can be very effective. Sect. 3.8 discusses how new genotypes created by selecting

the best chromosomes from parents’ genotypes can produce super-individuals. This

allows difficult multiple-output problems to be solved.

2.6.3 Evolutionary Algorithm

A variant on a simple evolutionary algorithm known as a 1+ λ evolutionary algo-
rithm [9] is widely used for CGP. Usually λ is chosen to be 4. This has the form
shown in Procedure 2.4.

Procedure 2.4 The (1+4) evolutionary strategy

1: for all i such that 0≤ i < 5 do

2: Randomly generate individual i

3: end for

4: Select the fittest individual, which is promoted as the parent

5: while a solution is not found or the generation limit is not reached do

6: for all i such that 0≤ i < 4 do

7: Mutate the parent to generate offspring i

8: end for

9: Generate the fittest individual using the following rules:

10: if an offspring genotype has a better or equal fitness than the parent then

11: Offspring genotype is chosen as fittest

12: else

13: The parent chromosome remains the fittest

14: end if

15: end while

On line 10 of the procedure there is an extra condition that when offspring geno-

types in the population have the same fitness as the parent and there is no offspring

that is better than the parent, in that case an offspring is chosen as the new parent.

This is a very important feature of the algorithm, which makes good use of redun-

dancy in CGP genotypes. This is discussed in Sect. 2.7.

2 Cartesian Genetic Programming 31

2.7 Genetic Redundancy in CGP Genotypes

We have already seen that in a CGP genotype there may be genes that are entirely

inactive, having no influence on the phenotype and hence on the fitness. Such inac-

tive genes therefore have a neutral effect on genotype fitness. This phenomenon is

often referred to as neutrality. CGP genotypes are dominated by redundant genes.

For instance, Miller and Smith showed that in genotypes having 4000 nodes, the

percentage of inactive nodes is approximately 95%! [6].

The influence of neutrality in CGP has been investigated in detail [7, 6, 10, 13,

14] and has been shown to be extremely beneficial to the efficiency of the evolution-

ary process on a range of test problems. Just how important neutral drift can be to

the effectiveness of CGP is illustrated in Fig. 2.8.

This shows the normalized best fitness value achieved in two sets of 100 inde-

pendent evolutionary runs of 10 million generations [10]. The target of evolution

was to evolve a correct three-bit digital parallel multiplier. In the first set of runs,

an offspring could replace a parent when it had the same fitness as the parent and

there was no other population member with a better fitness (as in line 10 of Proce-

dure 2.4). In the figure, the final fitness values are indicated by diamond symbols.

In the second set, a parent was replaced only when an offspring had a strictly better

fitness value. These results are indicated by plus symbols. In the case where neutral

drift was allowed, 27 correct multipliers were evolved. Also, many of the other cir-

cuits were very nearly correct. In the case where no neutral drift was allowed, there

were no runs that produced a correct multiplier, and the average fitness values are

considerably lower.

It is possible that by analyzing within an evolutionary algorithm whether mu-

tational offspring are phenotypically different from parents, one may be able to re-

duce the number of fitness evaluations. Since large amounts of non-coding genes are

helpful to evolution, it is more likely that mutations will occur only in non-coding

sections of the genotype; such genotypes will have the same fitness as their parents

and do not need to be evaluated. To accomplish this would require a slight change to

the evolutionary algorithm in Procedure 2.4. One would keep a record of the nodes

that need to be processed in the genotype that is promoted (i.e. array NP in Sect.

2.5.1). Then, if an offspring had exactly the same nodes that were active as in the

parent, it would be assigned the parent’s fitness. Whether in practice this happens

sufficiently often to warrant the extra processing required has not been investigated.

2.8 Parameter Settings for CGP

To arrive at good parameters for CGP normally requires some experimentation on

the problem being considered. However, some general advice can be given. A suit-

able mutation rate depends on the length of the genotype (in nodes). As a rule of

thumb, one should use about 1% mutation if a maximum of 100 nodes are used (i.e.

ncnr = 100). Let us assume that all primitive functions have two connection genes

32 Julian F. Miller

Fig. 2.8 The normalized best fitness value achieved in two sets of 100 independent evolutionary

runs of 10 million generations. The target of evolution was to evolve a correct three-bit digital

parallel multiplier. In one set of runs, neutral drift was allowed, and in the other, neutral drift was

not allowed. The evolutionary algorithm was unable to produce a correct circuit in the second case.

and the problem has a single output. Then a genotype with a maximum of 100 nodes

will require 301 genes. So 1% mutation would mean that up to three genes would

be mutated in the parent to create an offspring. Experience shows that to achieve

reasonably fast evolution one should arrange the mutation rate µr to be such that the

number of gene locations chosen for mutation is a slowly growing function of the

genotype length. For instance, in [6] it was found that µg = 90 proved to be a good
value when Lg = 12,004 (4000 two-input nodes and four outputs). This corresponds
to µr = 0.75%. When Lg = 154 (50 two-input nodes and four outputs), a good value
of µg was 6, which corresponds to µr = 4%. Even smaller genotypes usually require
higher mutation rates still for fast evolution.

Generally speaking, when optimal mutation rates are used, larger genotypes re-

quire fewer fitness evaluations to achieve evolutionary success than do smaller geno-

types. For instance, Miller and Smith found that the number of fitness evaluations

(i.e. genotypes whose fitness is calculated) required to successfully evolve a two-bit

multiplier circuit was lower for genotypes having 4000 nodes than for genotypes

of smaller length [6]! The way to understand this is to think about the usefulness of

neutral drift in the evolution of CGP genotypes. Larger CGP genotypes have a much

larger percentage of non-coding genes than do smaller genotypes, so the potential

2 Cartesian Genetic Programming 33

for neutral drift is much larger. This is another illustration of the great importance

of neutral drift in evolutionary algorithms for CGP.

So, we have seen that large genotypes lead to more efficient evolution; however,

given a certain genotype length, what is the optimal number of columns nc and

number of rows nr? The advice here is as follows. If there are no problems with

implementing arbitrary directed graphs, then the recommended choice of these pa-

rameters is nr = 1 with l = nc. However, if for instance one is evolving circuits for

implementation of evolved CGP genotypes on digital devices (with limited routing

resources), it is often useful to choose nc = nr. It should be stressed that these rec-

ommendations are ‘rules of thumb’, as no detailed quantitative work on this aspect

has been published.

CGP uses very small population sizes (5 in the case described in Sect. 2.6.3). So

one should expect large numbers of generations to be used. Despite this, in numer-

ous studies, it has been found that the average number of fitness evaluations required

to solve many problems can be favourably compared with other forms of GP (see

for instance [5, 12]).

2.9 Cyclic CGP

CGP has largely been used in an acyclic form, where graphs have no feedback.

However, there is no fundamental reason for this. The representaion of graphs used

in CGP is easily adapted to encode cyclic graphs. One merely needs to remove

the restriction that alleles for a particular node have to take values less than the

position (address) of the node. However, despite this, there has been little published

work where this restriction has been removed. One exception is the recent work of

Khan et al., who have encoded artificial neural networks in CGP [3]. They allowed

feedback and used CGP to evolve recurrent neural networks. Other exceptions are

the work of Walker et al., who applied CGP to the evolution of machine code of

sequential and parallel programs on a MOVE processor [11] and Liu et al., who

proposed a dual-layer CGP genotype representation in which one layer encoded

processor instructions and the other loop control parameters [4]. Also Sect. 5.6.2.1

describes how cyclic analogue circuits can be encoded in CGP.

Clearly, such an investigations would extend the expressivity of programs (since

feedback implies either recursion or iteration). It would also allow both synchronous

and asynchronous circuits to be evolved. A full investigation of this topic remains

for the future.

References

1. Brameier, M., Banzhaf, W.: A Comparison of Linear Genetic Programming and Neural Net-

works in Medical Data Mining. IEEE Transactions on Evolutionary Computation 5(1), 17–26

(2001)

34 Julian F. Miller

2. Clegg, J., Walker, J.A., Miller, J.F.: A New Crossover Technique for Cartesian Genetic Pro-

gramming. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1580–1587.

ACM Press (2007)

3. Khan, M.M., Khan, G.M., Miller, J.F.: Efficient representation of Recurrent Neural Networks

for Markovian/Non-Markovian Non-linear Control Problems. In: A.E. Hassanien, A. Abra-

ham, F. Marcelloni, H. Hagras, M. Antonelli, T.P. Hong (eds.) Proc. International Conference

on Intelligent Systems Design and Applications, pp. 615–620. IEEE (2010)

4. Liu, Y., Tempesti, G., Walker, J.A., Timmis, J., Tyrrell, A.M., Bremner, P.: A Self-Scaling

Instruction Generator Using Cartesian Genetic Programming. In: Proc. European Conference

on Genetic Programming, LNCS, vol. 6621, pp. 299–310. Springer (2011)

5. Miller, J.F.: An Empirical Study of the Efficiency of Learning Boolean Functions using a

Cartesian Genetic Programming Approach. In: Proc. Genetic and Evolutionary Computation

Conference, pp. 1135–1142. Morgan Kaufmann (1999)

6. Miller, J.F., Smith, S.L.: Redundancy and Computational Efficiency in Cartesian Genetic Pro-

gramming. IEEE Transactions on Evolutionary Computation 10(2), 167–174 (2006)

7. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proc. European Conference on

Genetic Programming, LNCS, vol. 1802, pp. 121–132. Springer (2000)

8. Miller, J.F., Thomson, P., Fogarty, T.C.: Designing Electronic Circuits Using Evolutionary

Algorithms: Arithmetic Circuits: A Case Study. In: D. Quagliarella, J. Periaux, C. Poloni,

G. Winter (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer

Science: Recent Advancements and Industrial Applications, pp. 105–131. Wiley (1998)

9. Rechenberg, I.: Evolutionsstrategie – Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution. Ph.D. thesis, Technical University of Berlin, Germany (1971)

10. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital Circuit Evolu-

tion. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 1801, pp. 252–263.

Springer (2000)

11. Walker, J.A., Liu, Y., Tempesti, G., Tyrrell, A.M.: Automatic Code Generation on a MOVE

Processor Using Cartesian Genetic Programming. In: Proc. International Conference on

Evolvable Systems: From Biology to Hardware, LNCS, vol. 6274, pp. 238–249. Springer

(2010)

12. Walker, J.A., Miller, J.F.: Automatic Acquisition, Evolution and Re-use of Modules in Carte-

sian Genetic Programming. IEEE Transactions on Evolutionary Computation 12, 397–417

(2008)

13. Yu, T., Miller, J.F.: Neutrality and the evolvability of Boolean function landscape. In: Proc. Eu-

ropean Conference on Genetic Programming, LNCS, vol. 2038, pp. 204–217. Springer (2001)

14. Yu, T., Miller, J.F.: Finding Needles in Haystacks is not Hard with Neutrality. In: Proc. Euro-

pean Conference on Genetic Programming, LNCS, vol. 2278, pp. 13–25. Springer (2002)

